MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbas Structured version   Visualization version   GIF version

Theorem psrbas 19141
Description: The base set of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) (Proof shortened by AV, 8-Jul-2019.)
Hypotheses
Ref Expression
psrbas.s 𝑆 = (𝐼 mPwSer 𝑅)
psrbas.k 𝐾 = (Base‘𝑅)
psrbas.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrbas.b 𝐵 = (Base‘𝑆)
psrbas.i (𝜑𝐼𝑉)
Assertion
Ref Expression
psrbas (𝜑𝐵 = (𝐾𝑚 𝐷))
Distinct variable group:   𝑓,𝐼
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑅(𝑓)   𝑆(𝑓)   𝐾(𝑓)   𝑉(𝑓)

Proof of Theorem psrbas
Dummy variables 𝑔 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrbas.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
2 psrbas.k . . . . 5 𝐾 = (Base‘𝑅)
3 eqid 2605 . . . . 5 (+g𝑅) = (+g𝑅)
4 eqid 2605 . . . . 5 (.r𝑅) = (.r𝑅)
5 eqid 2605 . . . . 5 (TopOpen‘𝑅) = (TopOpen‘𝑅)
6 psrbas.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
7 eqidd 2606 . . . . 5 ((𝜑𝑅 ∈ V) → (𝐾𝑚 𝐷) = (𝐾𝑚 𝐷))
8 eqid 2605 . . . . 5 ( ∘𝑓 (+g𝑅) ↾ ((𝐾𝑚 𝐷) × (𝐾𝑚 𝐷))) = ( ∘𝑓 (+g𝑅) ↾ ((𝐾𝑚 𝐷) × (𝐾𝑚 𝐷)))
9 eqid 2605 . . . . 5 (𝑔 ∈ (𝐾𝑚 𝐷), ∈ (𝐾𝑚 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘𝑓𝑥))))))) = (𝑔 ∈ (𝐾𝑚 𝐷), ∈ (𝐾𝑚 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘𝑓𝑥)))))))
10 eqid 2605 . . . . 5 (𝑥𝐾, 𝑔 ∈ (𝐾𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓 (.r𝑅)𝑔)) = (𝑥𝐾, 𝑔 ∈ (𝐾𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓 (.r𝑅)𝑔))
11 eqidd 2606 . . . . 5 ((𝜑𝑅 ∈ V) → (∏t‘(𝐷 × {(TopOpen‘𝑅)})) = (∏t‘(𝐷 × {(TopOpen‘𝑅)})))
12 psrbas.i . . . . . 6 (𝜑𝐼𝑉)
1312adantr 479 . . . . 5 ((𝜑𝑅 ∈ V) → 𝐼𝑉)
14 simpr 475 . . . . 5 ((𝜑𝑅 ∈ V) → 𝑅 ∈ V)
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14psrval 19125 . . . 4 ((𝜑𝑅 ∈ V) → 𝑆 = ({⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑅) ↾ ((𝐾𝑚 𝐷) × (𝐾𝑚 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾𝑚 𝐷), ∈ (𝐾𝑚 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓 (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}))
1615fveq2d 6088 . . 3 ((𝜑𝑅 ∈ V) → (Base‘𝑆) = (Base‘({⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑅) ↾ ((𝐾𝑚 𝐷) × (𝐾𝑚 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾𝑚 𝐷), ∈ (𝐾𝑚 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓 (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})))
17 psrbas.b . . 3 𝐵 = (Base‘𝑆)
18 ovex 6551 . . . 4 (𝐾𝑚 𝐷) ∈ V
19 psrvalstr 19126 . . . . 5 ({⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑅) ↾ ((𝐾𝑚 𝐷) × (𝐾𝑚 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾𝑚 𝐷), ∈ (𝐾𝑚 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓 (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}) Struct ⟨1, 9⟩
20 baseid 15689 . . . . 5 Base = Slot (Base‘ndx)
21 snsstp1 4282 . . . . . 6 {⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩} ⊆ {⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑅) ↾ ((𝐾𝑚 𝐷) × (𝐾𝑚 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾𝑚 𝐷), ∈ (𝐾𝑚 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘𝑓𝑥)))))))⟩}
22 ssun1 3733 . . . . . 6 {⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑅) ↾ ((𝐾𝑚 𝐷) × (𝐾𝑚 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾𝑚 𝐷), ∈ (𝐾𝑚 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘𝑓𝑥)))))))⟩} ⊆ ({⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑅) ↾ ((𝐾𝑚 𝐷) × (𝐾𝑚 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾𝑚 𝐷), ∈ (𝐾𝑚 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓 (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})
2321, 22sstri 3572 . . . . 5 {⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩} ⊆ ({⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑅) ↾ ((𝐾𝑚 𝐷) × (𝐾𝑚 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾𝑚 𝐷), ∈ (𝐾𝑚 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓 (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})
2419, 20, 23strfv 15677 . . . 4 ((𝐾𝑚 𝐷) ∈ V → (𝐾𝑚 𝐷) = (Base‘({⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑅) ↾ ((𝐾𝑚 𝐷) × (𝐾𝑚 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾𝑚 𝐷), ∈ (𝐾𝑚 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓 (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})))
2518, 24ax-mp 5 . . 3 (𝐾𝑚 𝐷) = (Base‘({⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑅) ↾ ((𝐾𝑚 𝐷) × (𝐾𝑚 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾𝑚 𝐷), ∈ (𝐾𝑚 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓 (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}))
2616, 17, 253eqtr4g 2664 . 2 ((𝜑𝑅 ∈ V) → 𝐵 = (𝐾𝑚 𝐷))
27 reldmpsr 19124 . . . . . . . 8 Rel dom mPwSer
2827ovprc2 6557 . . . . . . 7 𝑅 ∈ V → (𝐼 mPwSer 𝑅) = ∅)
2928adantl 480 . . . . . 6 ((𝜑 ∧ ¬ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) = ∅)
301, 29syl5eq 2651 . . . . 5 ((𝜑 ∧ ¬ 𝑅 ∈ V) → 𝑆 = ∅)
3130fveq2d 6088 . . . 4 ((𝜑 ∧ ¬ 𝑅 ∈ V) → (Base‘𝑆) = (Base‘∅))
32 base0 15682 . . . 4 ∅ = (Base‘∅)
3331, 17, 323eqtr4g 2664 . . 3 ((𝜑 ∧ ¬ 𝑅 ∈ V) → 𝐵 = ∅)
34 fvprc 6078 . . . . . 6 𝑅 ∈ V → (Base‘𝑅) = ∅)
3534adantl 480 . . . . 5 ((𝜑 ∧ ¬ 𝑅 ∈ V) → (Base‘𝑅) = ∅)
362, 35syl5eq 2651 . . . 4 ((𝜑 ∧ ¬ 𝑅 ∈ V) → 𝐾 = ∅)
376fczpsrbag 19130 . . . . . . 7 (𝐼𝑉 → (𝑥𝐼 ↦ 0) ∈ 𝐷)
3812, 37syl 17 . . . . . 6 (𝜑 → (𝑥𝐼 ↦ 0) ∈ 𝐷)
3938adantr 479 . . . . 5 ((𝜑 ∧ ¬ 𝑅 ∈ V) → (𝑥𝐼 ↦ 0) ∈ 𝐷)
40 ne0i 3875 . . . . 5 ((𝑥𝐼 ↦ 0) ∈ 𝐷𝐷 ≠ ∅)
4139, 40syl 17 . . . 4 ((𝜑 ∧ ¬ 𝑅 ∈ V) → 𝐷 ≠ ∅)
42 fvex 6094 . . . . . 6 (Base‘𝑅) ∈ V
432, 42eqeltri 2679 . . . . 5 𝐾 ∈ V
44 ovex 6551 . . . . . 6 (ℕ0𝑚 𝐼) ∈ V
456, 44rabex2 4733 . . . . 5 𝐷 ∈ V
4643, 45map0 7757 . . . 4 ((𝐾𝑚 𝐷) = ∅ ↔ (𝐾 = ∅ ∧ 𝐷 ≠ ∅))
4736, 41, 46sylanbrc 694 . . 3 ((𝜑 ∧ ¬ 𝑅 ∈ V) → (𝐾𝑚 𝐷) = ∅)
4833, 47eqtr4d 2642 . 2 ((𝜑 ∧ ¬ 𝑅 ∈ V) → 𝐵 = (𝐾𝑚 𝐷))
4926, 48pm2.61dan 827 1 (𝜑𝐵 = (𝐾𝑚 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382   = wceq 1474  wcel 1975  wne 2775  {crab 2895  Vcvv 3168  cun 3533  c0 3869  {csn 4120  {ctp 4124  cop 4126   class class class wbr 4573  cmpt 4633   × cxp 5022  ccnv 5023  cres 5026  cima 5027  cfv 5786  (class class class)co 6523  cmpt2 6525  𝑓 cof 6766  𝑟 cofr 6767  𝑚 cmap 7717  Fincfn 7814  0cc0 9788  1c1 9789  cle 9927  cmin 10113  cn 10863  9c9 10920  0cn0 11135  ndxcnx 15634  Basecbs 15637  +gcplusg 15710  .rcmulr 15711  Scalarcsca 15713   ·𝑠 cvsca 15714  TopSetcts 15716  TopOpenctopn 15847  tcpt 15864   Σg cgsu 15866   mPwSer cmps 19114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-cnex 9844  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-int 4401  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-of 6768  df-om 6931  df-1st 7032  df-2nd 7033  df-supp 7156  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-1o 7420  df-oadd 7424  df-er 7602  df-map 7719  df-en 7815  df-dom 7816  df-sdom 7817  df-fin 7818  df-fsupp 8132  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-nn 10864  df-2 10922  df-3 10923  df-4 10924  df-5 10925  df-6 10926  df-7 10927  df-8 10928  df-9 10929  df-n0 11136  df-z 11207  df-uz 11516  df-fz 12149  df-struct 15639  df-ndx 15640  df-slot 15641  df-base 15642  df-plusg 15723  df-mulr 15724  df-sca 15726  df-vsca 15727  df-tset 15729  df-psr 19119
This theorem is referenced by:  psrelbas  19142  psrplusg  19144  psraddcl  19146  psrmulr  19147  psrmulcllem  19150  psrsca  19152  psrvscafval  19153  psrvscacl  19156  psr0cl  19157  psrnegcl  19159  psr1cl  19165  resspsrbas  19178  resspsradd  19179  resspsrmul  19180  subrgpsr  19182  mvrf  19187  mplmon  19226  mplcoe1  19228  opsrtoslem2  19248  psr1bas  19324  psrbaspropd  19368  ply1plusgfvi  19375
  Copyright terms: Public domain W3C validator