MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrlinv Structured version   Visualization version   GIF version

Theorem psrlinv 20105
Description: The negative function in the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrgrp.s 𝑆 = (𝐼 mPwSer 𝑅)
psrgrp.i (𝜑𝐼𝑉)
psrgrp.r (𝜑𝑅 ∈ Grp)
psrnegcl.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrnegcl.i 𝑁 = (invg𝑅)
psrnegcl.b 𝐵 = (Base‘𝑆)
psrnegcl.z (𝜑𝑋𝐵)
psrlinv.o 0 = (0g𝑅)
psrlinv.p + = (+g𝑆)
Assertion
Ref Expression
psrlinv (𝜑 → ((𝑁𝑋) + 𝑋) = (𝐷 × { 0 }))
Distinct variable group:   𝑓,𝐼
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   + (𝑓)   𝑅(𝑓)   𝑆(𝑓)   𝑁(𝑓)   𝑉(𝑓)   𝑋(𝑓)   0 (𝑓)

Proof of Theorem psrlinv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrnegcl.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
2 ovex 7178 . . . . 5 (ℕ0m 𝐼) ∈ V
31, 2rabex2 5228 . . . 4 𝐷 ∈ V
43a1i 11 . . 3 (𝜑𝐷 ∈ V)
5 fvexd 6678 . . 3 ((𝜑𝑥𝐷) → (𝑁‘(𝑋𝑥)) ∈ V)
6 psrgrp.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
7 eqid 2818 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
8 psrnegcl.b . . . . 5 𝐵 = (Base‘𝑆)
9 psrnegcl.z . . . . 5 (𝜑𝑋𝐵)
106, 7, 1, 8, 9psrelbas 20087 . . . 4 (𝜑𝑋:𝐷⟶(Base‘𝑅))
1110ffvelrnda 6843 . . 3 ((𝜑𝑥𝐷) → (𝑋𝑥) ∈ (Base‘𝑅))
1210feqmptd 6726 . . . 4 (𝜑𝑋 = (𝑥𝐷 ↦ (𝑋𝑥)))
13 psrnegcl.i . . . . . . 7 𝑁 = (invg𝑅)
14 psrgrp.r . . . . . . 7 (𝜑𝑅 ∈ Grp)
157, 13, 14grpinvf1o 18107 . . . . . 6 (𝜑𝑁:(Base‘𝑅)–1-1-onto→(Base‘𝑅))
16 f1of 6608 . . . . . 6 (𝑁:(Base‘𝑅)–1-1-onto→(Base‘𝑅) → 𝑁:(Base‘𝑅)⟶(Base‘𝑅))
1715, 16syl 17 . . . . 5 (𝜑𝑁:(Base‘𝑅)⟶(Base‘𝑅))
1817feqmptd 6726 . . . 4 (𝜑𝑁 = (𝑦 ∈ (Base‘𝑅) ↦ (𝑁𝑦)))
19 fveq2 6663 . . . 4 (𝑦 = (𝑋𝑥) → (𝑁𝑦) = (𝑁‘(𝑋𝑥)))
2011, 12, 18, 19fmptco 6883 . . 3 (𝜑 → (𝑁𝑋) = (𝑥𝐷 ↦ (𝑁‘(𝑋𝑥))))
214, 5, 11, 20, 12offval2 7415 . 2 (𝜑 → ((𝑁𝑋) ∘f (+g𝑅)𝑋) = (𝑥𝐷 ↦ ((𝑁‘(𝑋𝑥))(+g𝑅)(𝑋𝑥))))
22 eqid 2818 . . 3 (+g𝑅) = (+g𝑅)
23 psrlinv.p . . 3 + = (+g𝑆)
24 psrgrp.i . . . 4 (𝜑𝐼𝑉)
256, 24, 14, 1, 13, 8, 9psrnegcl 20104 . . 3 (𝜑 → (𝑁𝑋) ∈ 𝐵)
266, 8, 22, 23, 25, 9psradd 20090 . 2 (𝜑 → ((𝑁𝑋) + 𝑋) = ((𝑁𝑋) ∘f (+g𝑅)𝑋))
27 psrlinv.o . . . . . 6 0 = (0g𝑅)
287, 22, 27, 13grplinv 18090 . . . . 5 ((𝑅 ∈ Grp ∧ (𝑋𝑥) ∈ (Base‘𝑅)) → ((𝑁‘(𝑋𝑥))(+g𝑅)(𝑋𝑥)) = 0 )
2914, 11, 28syl2an2r 681 . . . 4 ((𝜑𝑥𝐷) → ((𝑁‘(𝑋𝑥))(+g𝑅)(𝑋𝑥)) = 0 )
3029mpteq2dva 5152 . . 3 (𝜑 → (𝑥𝐷 ↦ ((𝑁‘(𝑋𝑥))(+g𝑅)(𝑋𝑥))) = (𝑥𝐷0 ))
31 fconstmpt 5607 . . 3 (𝐷 × { 0 }) = (𝑥𝐷0 )
3230, 31syl6reqr 2872 . 2 (𝜑 → (𝐷 × { 0 }) = (𝑥𝐷 ↦ ((𝑁‘(𝑋𝑥))(+g𝑅)(𝑋𝑥))))
3321, 26, 323eqtr4d 2863 1 (𝜑 → ((𝑁𝑋) + 𝑋) = (𝐷 × { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  {crab 3139  Vcvv 3492  {csn 4557  cmpt 5137   × cxp 5546  ccnv 5547  cima 5551  ccom 5552  wf 6344  1-1-ontowf1o 6347  cfv 6348  (class class class)co 7145  f cof 7396  m cmap 8395  Fincfn 8497  cn 11626  0cn0 11885  Basecbs 16471  +gcplusg 16553  0gc0g 16701  Grpcgrp 18041  invgcminusg 18042   mPwSer cmps 20059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-plusg 16566  df-mulr 16567  df-sca 16569  df-vsca 16570  df-tset 16572  df-0g 16703  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-grp 18044  df-minusg 18045  df-psr 20064
This theorem is referenced by:  psrgrp  20106  psrneg  20108
  Copyright terms: Public domain W3C validator