MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrlinv Structured version   Visualization version   GIF version

Theorem psrlinv 19166
Description: The negative function in the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrgrp.s 𝑆 = (𝐼 mPwSer 𝑅)
psrgrp.i (𝜑𝐼𝑉)
psrgrp.r (𝜑𝑅 ∈ Grp)
psrnegcl.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrnegcl.i 𝑁 = (invg𝑅)
psrnegcl.b 𝐵 = (Base‘𝑆)
psrnegcl.z (𝜑𝑋𝐵)
psrlinv.o 0 = (0g𝑅)
psrlinv.p + = (+g𝑆)
Assertion
Ref Expression
psrlinv (𝜑 → ((𝑁𝑋) + 𝑋) = (𝐷 × { 0 }))
Distinct variable group:   𝑓,𝐼
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   + (𝑓)   𝑅(𝑓)   𝑆(𝑓)   𝑁(𝑓)   𝑉(𝑓)   𝑋(𝑓)   0 (𝑓)

Proof of Theorem psrlinv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrnegcl.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
2 ovex 6554 . . . . 5 (ℕ0𝑚 𝐼) ∈ V
31, 2rabex2 4736 . . . 4 𝐷 ∈ V
43a1i 11 . . 3 (𝜑𝐷 ∈ V)
5 fvex 6097 . . . 4 (𝑁‘(𝑋𝑥)) ∈ V
65a1i 11 . . 3 ((𝜑𝑥𝐷) → (𝑁‘(𝑋𝑥)) ∈ V)
7 psrgrp.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
8 eqid 2609 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
9 psrnegcl.b . . . . 5 𝐵 = (Base‘𝑆)
10 psrnegcl.z . . . . 5 (𝜑𝑋𝐵)
117, 8, 1, 9, 10psrelbas 19148 . . . 4 (𝜑𝑋:𝐷⟶(Base‘𝑅))
1211ffvelrnda 6251 . . 3 ((𝜑𝑥𝐷) → (𝑋𝑥) ∈ (Base‘𝑅))
1311feqmptd 6143 . . . 4 (𝜑𝑋 = (𝑥𝐷 ↦ (𝑋𝑥)))
14 psrnegcl.i . . . . . . 7 𝑁 = (invg𝑅)
15 psrgrp.r . . . . . . 7 (𝜑𝑅 ∈ Grp)
168, 14, 15grpinvf1o 17256 . . . . . 6 (𝜑𝑁:(Base‘𝑅)–1-1-onto→(Base‘𝑅))
17 f1of 6034 . . . . . 6 (𝑁:(Base‘𝑅)–1-1-onto→(Base‘𝑅) → 𝑁:(Base‘𝑅)⟶(Base‘𝑅))
1816, 17syl 17 . . . . 5 (𝜑𝑁:(Base‘𝑅)⟶(Base‘𝑅))
1918feqmptd 6143 . . . 4 (𝜑𝑁 = (𝑦 ∈ (Base‘𝑅) ↦ (𝑁𝑦)))
20 fveq2 6087 . . . 4 (𝑦 = (𝑋𝑥) → (𝑁𝑦) = (𝑁‘(𝑋𝑥)))
2112, 13, 19, 20fmptco 6287 . . 3 (𝜑 → (𝑁𝑋) = (𝑥𝐷 ↦ (𝑁‘(𝑋𝑥))))
224, 6, 12, 21, 13offval2 6789 . 2 (𝜑 → ((𝑁𝑋) ∘𝑓 (+g𝑅)𝑋) = (𝑥𝐷 ↦ ((𝑁‘(𝑋𝑥))(+g𝑅)(𝑋𝑥))))
23 eqid 2609 . . 3 (+g𝑅) = (+g𝑅)
24 psrlinv.p . . 3 + = (+g𝑆)
25 psrgrp.i . . . 4 (𝜑𝐼𝑉)
267, 25, 15, 1, 14, 9, 10psrnegcl 19165 . . 3 (𝜑 → (𝑁𝑋) ∈ 𝐵)
277, 9, 23, 24, 26, 10psradd 19151 . 2 (𝜑 → ((𝑁𝑋) + 𝑋) = ((𝑁𝑋) ∘𝑓 (+g𝑅)𝑋))
28 psrlinv.o . . . . . 6 0 = (0g𝑅)
298, 23, 28, 14grplinv 17239 . . . . 5 ((𝑅 ∈ Grp ∧ (𝑋𝑥) ∈ (Base‘𝑅)) → ((𝑁‘(𝑋𝑥))(+g𝑅)(𝑋𝑥)) = 0 )
3015, 12, 29syl2an2r 871 . . . 4 ((𝜑𝑥𝐷) → ((𝑁‘(𝑋𝑥))(+g𝑅)(𝑋𝑥)) = 0 )
3130mpteq2dva 4666 . . 3 (𝜑 → (𝑥𝐷 ↦ ((𝑁‘(𝑋𝑥))(+g𝑅)(𝑋𝑥))) = (𝑥𝐷0 ))
32 fconstmpt 5074 . . 3 (𝐷 × { 0 }) = (𝑥𝐷0 )
3331, 32syl6reqr 2662 . 2 (𝜑 → (𝐷 × { 0 }) = (𝑥𝐷 ↦ ((𝑁‘(𝑋𝑥))(+g𝑅)(𝑋𝑥))))
3422, 27, 333eqtr4d 2653 1 (𝜑 → ((𝑁𝑋) + 𝑋) = (𝐷 × { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  {crab 2899  Vcvv 3172  {csn 4124  cmpt 4637   × cxp 5025  ccnv 5026  cima 5030  ccom 5031  wf 5785  1-1-ontowf1o 5788  cfv 5789  (class class class)co 6526  𝑓 cof 6770  𝑚 cmap 7721  Fincfn 7818  cn 10869  0cn0 11141  Basecbs 15643  +gcplusg 15716  0gc0g 15871  Grpcgrp 17193  invgcminusg 17194   mPwSer cmps 19120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4938  df-id 4942  df-po 4948  df-so 4949  df-fr 4986  df-we 4988  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-pred 5582  df-ord 5628  df-on 5629  df-lim 5630  df-suc 5631  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-of 6772  df-om 6935  df-1st 7036  df-2nd 7037  df-supp 7160  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-map 7723  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fsupp 8136  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10870  df-2 10928  df-3 10929  df-4 10930  df-5 10931  df-6 10932  df-7 10933  df-8 10934  df-9 10935  df-n0 11142  df-z 11213  df-uz 11522  df-fz 12155  df-struct 15645  df-ndx 15646  df-slot 15647  df-base 15648  df-plusg 15729  df-mulr 15730  df-sca 15732  df-vsca 15733  df-tset 15735  df-0g 15873  df-mgm 17013  df-sgrp 17055  df-mnd 17066  df-grp 17196  df-minusg 17197  df-psr 19125
This theorem is referenced by:  psrgrp  19167  psrneg  19169
  Copyright terms: Public domain W3C validator