MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrmulcllem Structured version   Visualization version   GIF version

Theorem psrmulcllem 20095
Description: Closure of the power series multiplication operation. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrmulcl.s 𝑆 = (𝐼 mPwSer 𝑅)
psrmulcl.b 𝐵 = (Base‘𝑆)
psrmulcl.t · = (.r𝑆)
psrmulcl.r (𝜑𝑅 ∈ Ring)
psrmulcl.x (𝜑𝑋𝐵)
psrmulcl.y (𝜑𝑌𝐵)
psrmulcl.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrmulcllem (𝜑 → (𝑋 · 𝑌) ∈ 𝐵)
Distinct variable group:   𝑓,𝐼
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑅(𝑓)   𝑆(𝑓)   · (𝑓)   𝑋(𝑓)   𝑌(𝑓)

Proof of Theorem psrmulcllem
Dummy variables 𝑥 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2818 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2818 . . . . 5 (0g𝑅) = (0g𝑅)
3 psrmulcl.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
43adantr 481 . . . . . 6 ((𝜑𝑘𝐷) → 𝑅 ∈ Ring)
5 ringcmn 19260 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
64, 5syl 17 . . . . 5 ((𝜑𝑘𝐷) → 𝑅 ∈ CMnd)
7 psrmulcl.x . . . . . . . 8 (𝜑𝑋𝐵)
8 reldmpsr 20069 . . . . . . . . 9 Rel dom mPwSer
9 psrmulcl.s . . . . . . . . 9 𝑆 = (𝐼 mPwSer 𝑅)
10 psrmulcl.b . . . . . . . . 9 𝐵 = (Base‘𝑆)
118, 9, 10elbasov 16533 . . . . . . . 8 (𝑋𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
127, 11syl 17 . . . . . . 7 (𝜑 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
1312simpld 495 . . . . . 6 (𝜑𝐼 ∈ V)
14 psrmulcl.d . . . . . . 7 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
1514psrbaglefi 20080 . . . . . 6 ((𝐼 ∈ V ∧ 𝑘𝐷) → {𝑦𝐷𝑦r𝑘} ∈ Fin)
1613, 15sylan 580 . . . . 5 ((𝜑𝑘𝐷) → {𝑦𝐷𝑦r𝑘} ∈ Fin)
173ad2antrr 722 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑅 ∈ Ring)
189, 1, 14, 10, 7psrelbas 20087 . . . . . . . . 9 (𝜑𝑋:𝐷⟶(Base‘𝑅))
1918ad2antrr 722 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑋:𝐷⟶(Base‘𝑅))
20 simpr 485 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥 ∈ {𝑦𝐷𝑦r𝑘})
21 breq1 5060 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑦r𝑘𝑥r𝑘))
2221elrab 3677 . . . . . . . . . 10 (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↔ (𝑥𝐷𝑥r𝑘))
2320, 22sylib 219 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑥𝐷𝑥r𝑘))
2423simpld 495 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥𝐷)
2519, 24ffvelrnd 6844 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑋𝑥) ∈ (Base‘𝑅))
26 psrmulcl.y . . . . . . . . . 10 (𝜑𝑌𝐵)
279, 1, 14, 10, 26psrelbas 20087 . . . . . . . . 9 (𝜑𝑌:𝐷⟶(Base‘𝑅))
2827ad2antrr 722 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑌:𝐷⟶(Base‘𝑅))
2913ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝐼 ∈ V)
30 simplr 765 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑘𝐷)
3114psrbagf 20073 . . . . . . . . . . 11 ((𝐼 ∈ V ∧ 𝑥𝐷) → 𝑥:𝐼⟶ℕ0)
3229, 24, 31syl2anc 584 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥:𝐼⟶ℕ0)
3323simprd 496 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥r𝑘)
3414psrbagcon 20079 . . . . . . . . . 10 ((𝐼 ∈ V ∧ (𝑘𝐷𝑥:𝐼⟶ℕ0𝑥r𝑘)) → ((𝑘f𝑥) ∈ 𝐷 ∧ (𝑘f𝑥) ∘r𝑘))
3529, 30, 32, 33, 34syl13anc 1364 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑘f𝑥) ∈ 𝐷 ∧ (𝑘f𝑥) ∘r𝑘))
3635simpld 495 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ 𝐷)
3728, 36ffvelrnd 6844 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑌‘(𝑘f𝑥)) ∈ (Base‘𝑅))
38 eqid 2818 . . . . . . . 8 (.r𝑅) = (.r𝑅)
391, 38ringcl 19240 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝑥) ∈ (Base‘𝑅) ∧ (𝑌‘(𝑘f𝑥)) ∈ (Base‘𝑅)) → ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))) ∈ (Base‘𝑅))
4017, 25, 37, 39syl3anc 1363 . . . . . 6 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))) ∈ (Base‘𝑅))
4140fmpttd 6871 . . . . 5 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))):{𝑦𝐷𝑦r𝑘}⟶(Base‘𝑅))
42 fvexd 6678 . . . . . 6 ((𝜑𝑘𝐷) → (0g𝑅) ∈ V)
4341, 16, 42fdmfifsupp 8831 . . . . 5 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) finSupp (0g𝑅))
441, 2, 6, 16, 41, 43gsumcl 18964 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))) ∈ (Base‘𝑅))
4544fmpttd 6871 . . 3 (𝜑 → (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))):𝐷⟶(Base‘𝑅))
46 fvex 6676 . . . 4 (Base‘𝑅) ∈ V
47 ovex 7178 . . . . 5 (ℕ0m 𝐼) ∈ V
4814, 47rabex2 5228 . . . 4 𝐷 ∈ V
4946, 48elmap 8424 . . 3 ((𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))) ∈ ((Base‘𝑅) ↑m 𝐷) ↔ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))):𝐷⟶(Base‘𝑅))
5045, 49sylibr 235 . 2 (𝜑 → (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))) ∈ ((Base‘𝑅) ↑m 𝐷))
51 psrmulcl.t . . 3 · = (.r𝑆)
529, 10, 38, 51, 14, 7, 26psrmulfval 20093 . 2 (𝜑 → (𝑋 · 𝑌) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))))
539, 1, 14, 10, 13psrbas 20086 . 2 (𝜑𝐵 = ((Base‘𝑅) ↑m 𝐷))
5450, 52, 533eltr4d 2925 1 (𝜑 → (𝑋 · 𝑌) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  {crab 3139  Vcvv 3492   class class class wbr 5057  cmpt 5137  ccnv 5547  cima 5551  wf 6344  cfv 6348  (class class class)co 7145  f cof 7396  r cofr 7397  m cmap 8395  Fincfn 8497  cle 10664  cmin 10858  cn 11626  0cn0 11885  Basecbs 16471  .rcmulr 16554  0gc0g 16701   Σg cgsu 16702  CMndccmn 18835  Ringcrg 19226   mPwSer cmps 20059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-ofr 7399  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881  df-fzo 13022  df-seq 13358  df-hash 13679  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-plusg 16566  df-mulr 16567  df-sca 16569  df-vsca 16570  df-tset 16572  df-0g 16703  df-gsum 16704  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-grp 18044  df-minusg 18045  df-cntz 18385  df-cmn 18837  df-abl 18838  df-mgp 19169  df-ur 19181  df-ring 19228  df-psr 20064
This theorem is referenced by:  psrmulcl  20096
  Copyright terms: Public domain W3C validator