MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrplusg Structured version   Visualization version   GIF version

Theorem psrplusg 19150
Description: The addition operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
psrplusg.s 𝑆 = (𝐼 mPwSer 𝑅)
psrplusg.b 𝐵 = (Base‘𝑆)
psrplusg.a + = (+g𝑅)
psrplusg.p = (+g𝑆)
Assertion
Ref Expression
psrplusg = ( ∘𝑓 + ↾ (𝐵 × 𝐵))

Proof of Theorem psrplusg
Dummy variables 𝑓 𝑔 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrplusg.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
2 eqid 2609 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
3 psrplusg.a . . . . 5 + = (+g𝑅)
4 eqid 2609 . . . . 5 (.r𝑅) = (.r𝑅)
5 eqid 2609 . . . . 5 (TopOpen‘𝑅) = (TopOpen‘𝑅)
6 eqid 2609 . . . . 5 { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
7 psrplusg.b . . . . . 6 𝐵 = (Base‘𝑆)
8 simpl 471 . . . . . 6 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝐼 ∈ V)
91, 2, 6, 7, 8psrbas 19147 . . . . 5 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝐵 = ((Base‘𝑅) ↑𝑚 { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}))
10 eqid 2609 . . . . 5 ( ∘𝑓 + ↾ (𝐵 × 𝐵)) = ( ∘𝑓 + ↾ (𝐵 × 𝐵))
11 eqid 2609 . . . . 5 (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥))))))) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))
12 eqid 2609 . . . . 5 (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓)) = (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓))
13 eqidd 2610 . . . . 5 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)})) = (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)})))
14 simpr 475 . . . . 5 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝑅 ∈ V)
151, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 8, 14psrval 19131 . . . 4 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝑆 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩}))
1615fveq2d 6091 . . 3 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → (+g𝑆) = (+g‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩})))
17 psrplusg.p . . 3 = (+g𝑆)
18 fvex 6097 . . . . . 6 (Base‘𝑆) ∈ V
197, 18eqeltri 2683 . . . . 5 𝐵 ∈ V
2019, 19xpex 6837 . . . 4 (𝐵 × 𝐵) ∈ V
21 ofexg 6776 . . . 4 ((𝐵 × 𝐵) ∈ V → ( ∘𝑓 + ↾ (𝐵 × 𝐵)) ∈ V)
22 psrvalstr 19132 . . . . 5 ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩}) Struct ⟨1, 9⟩
23 plusgid 15752 . . . . 5 +g = Slot (+g‘ndx)
24 snsstp2 4287 . . . . . 6 {⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩} ⊆ {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))⟩}
25 ssun1 3737 . . . . . 6 {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ⊆ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩})
2624, 25sstri 3576 . . . . 5 {⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩} ⊆ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩})
2722, 23, 26strfv 15683 . . . 4 (( ∘𝑓 + ↾ (𝐵 × 𝐵)) ∈ V → ( ∘𝑓 + ↾ (𝐵 × 𝐵)) = (+g‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩})))
2820, 21, 27mp2b 10 . . 3 ( ∘𝑓 + ↾ (𝐵 × 𝐵)) = (+g‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘𝑓 + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘𝑓 (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩}))
2916, 17, 283eqtr4g 2668 . 2 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → = ( ∘𝑓 + ↾ (𝐵 × 𝐵)))
30 reldmpsr 19130 . . . . . . 7 Rel dom mPwSer
3130ovprc 6558 . . . . . 6 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) = ∅)
321, 31syl5eq 2655 . . . . 5 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝑆 = ∅)
3332fveq2d 6091 . . . 4 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (+g𝑆) = (+g‘∅))
3423str0 15687 . . . 4 ∅ = (+g‘∅)
3533, 17, 343eqtr4g 2668 . . 3 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → = ∅)
3632fveq2d 6091 . . . . . . . 8 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (Base‘𝑆) = (Base‘∅))
37 base0 15688 . . . . . . . 8 ∅ = (Base‘∅)
3836, 7, 373eqtr4g 2668 . . . . . . 7 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝐵 = ∅)
3938xpeq2d 5052 . . . . . 6 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐵 × 𝐵) = (𝐵 × ∅))
40 xp0 5456 . . . . . 6 (𝐵 × ∅) = ∅
4139, 40syl6eq 2659 . . . . 5 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐵 × 𝐵) = ∅)
4241reseq2d 5303 . . . 4 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → ( ∘𝑓 + ↾ (𝐵 × 𝐵)) = ( ∘𝑓 + ↾ ∅))
43 res0 5307 . . . 4 ( ∘𝑓 + ↾ ∅) = ∅
4442, 43syl6eq 2659 . . 3 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → ( ∘𝑓 + ↾ (𝐵 × 𝐵)) = ∅)
4535, 44eqtr4d 2646 . 2 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → = ( ∘𝑓 + ↾ (𝐵 × 𝐵)))
4629, 45pm2.61i 174 1 = ( ∘𝑓 + ↾ (𝐵 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 382   = wceq 1474  wcel 1976  {crab 2899  Vcvv 3172  cun 3537  c0 3873  {csn 4124  {ctp 4128  cop 4130   class class class wbr 4577  cmpt 4637   × cxp 5025  ccnv 5026  cres 5029  cima 5030  cfv 5789  (class class class)co 6526  cmpt2 6528  𝑓 cof 6770  𝑟 cofr 6771  𝑚 cmap 7721  Fincfn 7818  1c1 9793  cle 9931  cmin 10117  cn 10869  9c9 10926  0cn0 11141  ndxcnx 15640  Basecbs 15643  +gcplusg 15716  .rcmulr 15717  Scalarcsca 15719   ·𝑠 cvsca 15720  TopSetcts 15722  TopOpenctopn 15853  tcpt 15870   Σg cgsu 15872   mPwSer cmps 19120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4938  df-id 4942  df-po 4948  df-so 4949  df-fr 4986  df-we 4988  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-pred 5582  df-ord 5628  df-on 5629  df-lim 5630  df-suc 5631  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-of 6772  df-om 6935  df-1st 7036  df-2nd 7037  df-supp 7160  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-map 7723  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fsupp 8136  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10870  df-2 10928  df-3 10929  df-4 10930  df-5 10931  df-6 10932  df-7 10933  df-8 10934  df-9 10935  df-n0 11142  df-z 11213  df-uz 11522  df-fz 12155  df-struct 15645  df-ndx 15646  df-slot 15647  df-base 15648  df-plusg 15729  df-mulr 15730  df-sca 15732  df-vsca 15733  df-tset 15735  df-psr 19125
This theorem is referenced by:  psradd  19151  psrmulr  19153  psrsca  19158  psrvscafval  19159  psrplusgpropd  19375  ply1plusgfvi  19381
  Copyright terms: Public domain W3C validator