MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrridm Structured version   Visualization version   GIF version

Theorem psrridm 19171
Description: The identity element of the ring of power series is a right identity. (Contributed by Mario Carneiro, 29-Dec-2014.) (Proof shortened by AV, 8-Jul-2019.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
psr1cl.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psr1cl.z 0 = (0g𝑅)
psr1cl.o 1 = (1r𝑅)
psr1cl.u 𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))
psr1cl.b 𝐵 = (Base‘𝑆)
psrlidm.t · = (.r𝑆)
psrlidm.x (𝜑𝑋𝐵)
Assertion
Ref Expression
psrridm (𝜑 → (𝑋 · 𝑈) = 𝑋)
Distinct variable groups:   𝑥,𝑓, 0   𝑓,𝐼,𝑥   𝑥,𝐵   𝑅,𝑓,𝑥   𝑥,𝐷   𝑓,𝑋,𝑥   𝜑,𝑥   𝑥,𝑉   𝑥, ·   𝑥,𝑆   𝑥, 1
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑆(𝑓)   · (𝑓)   𝑈(𝑥,𝑓)   1 (𝑓)   𝑉(𝑓)

Proof of Theorem psrridm
Dummy variables 𝑦 𝑧 𝑔 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrring.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
2 eqid 2609 . . . 4 (Base‘𝑅) = (Base‘𝑅)
3 psr1cl.d . . . 4 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
4 psr1cl.b . . . 4 𝐵 = (Base‘𝑆)
5 psrlidm.t . . . . 5 · = (.r𝑆)
6 psrring.r . . . . 5 (𝜑𝑅 ∈ Ring)
7 psrlidm.x . . . . 5 (𝜑𝑋𝐵)
8 psrring.i . . . . . 6 (𝜑𝐼𝑉)
9 psr1cl.z . . . . . 6 0 = (0g𝑅)
10 psr1cl.o . . . . . 6 1 = (1r𝑅)
11 psr1cl.u . . . . . 6 𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))
121, 8, 6, 3, 9, 10, 11, 4psr1cl 19169 . . . . 5 (𝜑𝑈𝐵)
131, 4, 5, 6, 7, 12psrmulcl 19155 . . . 4 (𝜑 → (𝑋 · 𝑈) ∈ 𝐵)
141, 2, 3, 4, 13psrelbas 19146 . . 3 (𝜑 → (𝑋 · 𝑈):𝐷⟶(Base‘𝑅))
1514ffnd 5945 . 2 (𝜑 → (𝑋 · 𝑈) Fn 𝐷)
161, 2, 3, 4, 7psrelbas 19146 . . 3 (𝜑𝑋:𝐷⟶(Base‘𝑅))
1716ffnd 5945 . 2 (𝜑𝑋 Fn 𝐷)
18 eqid 2609 . . . 4 (.r𝑅) = (.r𝑅)
197adantr 479 . . . 4 ((𝜑𝑦𝐷) → 𝑋𝐵)
2012adantr 479 . . . 4 ((𝜑𝑦𝐷) → 𝑈𝐵)
21 simpr 475 . . . 4 ((𝜑𝑦𝐷) → 𝑦𝐷)
221, 4, 18, 5, 3, 19, 20, 21psrmulval 19153 . . 3 ((𝜑𝑦𝐷) → ((𝑋 · 𝑈)‘𝑦) = (𝑅 Σg (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧))))))
238adantr 479 . . . . . . . . 9 ((𝜑𝑦𝐷) → 𝐼𝑉)
243psrbagf 19132 . . . . . . . . . 10 ((𝐼𝑉𝑦𝐷) → 𝑦:𝐼⟶ℕ0)
258, 24sylan 486 . . . . . . . . 9 ((𝜑𝑦𝐷) → 𝑦:𝐼⟶ℕ0)
26 nn0re 11148 . . . . . . . . . . 11 (𝑧 ∈ ℕ0𝑧 ∈ ℝ)
2726leidd 10443 . . . . . . . . . 10 (𝑧 ∈ ℕ0𝑧𝑧)
2827adantl 480 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ℕ0) → 𝑧𝑧)
2923, 25, 28caofref 6798 . . . . . . . 8 ((𝜑𝑦𝐷) → 𝑦𝑟𝑦)
30 breq1 4580 . . . . . . . . 9 (𝑔 = 𝑦 → (𝑔𝑟𝑦𝑦𝑟𝑦))
3130elrab 3330 . . . . . . . 8 (𝑦 ∈ {𝑔𝐷𝑔𝑟𝑦} ↔ (𝑦𝐷𝑦𝑟𝑦))
3221, 29, 31sylanbrc 694 . . . . . . 7 ((𝜑𝑦𝐷) → 𝑦 ∈ {𝑔𝐷𝑔𝑟𝑦})
3332snssd 4280 . . . . . 6 ((𝜑𝑦𝐷) → {𝑦} ⊆ {𝑔𝐷𝑔𝑟𝑦})
3433resmptd 5358 . . . . 5 ((𝜑𝑦𝐷) → ((𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧)))) ↾ {𝑦}) = (𝑧 ∈ {𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧)))))
3534oveq2d 6543 . . . 4 ((𝜑𝑦𝐷) → (𝑅 Σg ((𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧)))) ↾ {𝑦})) = (𝑅 Σg (𝑧 ∈ {𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧))))))
36 ringcmn 18350 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
376, 36syl 17 . . . . . 6 (𝜑𝑅 ∈ CMnd)
3837adantr 479 . . . . 5 ((𝜑𝑦𝐷) → 𝑅 ∈ CMnd)
39 ovex 6555 . . . . . . 7 (ℕ0𝑚 𝐼) ∈ V
403, 39rab2ex 4738 . . . . . 6 {𝑔𝐷𝑔𝑟𝑦} ∈ V
4140a1i 11 . . . . 5 ((𝜑𝑦𝐷) → {𝑔𝐷𝑔𝑟𝑦} ∈ V)
426ad2antrr 757 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → 𝑅 ∈ Ring)
4316ad2antrr 757 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → 𝑋:𝐷⟶(Base‘𝑅))
44 simpr 475 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦})
45 breq1 4580 . . . . . . . . . . 11 (𝑔 = 𝑧 → (𝑔𝑟𝑦𝑧𝑟𝑦))
4645elrab 3330 . . . . . . . . . 10 (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↔ (𝑧𝐷𝑧𝑟𝑦))
4744, 46sylib 206 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → (𝑧𝐷𝑧𝑟𝑦))
4847simpld 473 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → 𝑧𝐷)
4943, 48ffvelrnd 6253 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → (𝑋𝑧) ∈ (Base‘𝑅))
501, 2, 3, 4, 20psrelbas 19146 . . . . . . . . 9 ((𝜑𝑦𝐷) → 𝑈:𝐷⟶(Base‘𝑅))
5150adantr 479 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → 𝑈:𝐷⟶(Base‘𝑅))
528ad2antrr 757 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → 𝐼𝑉)
5321adantr 479 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → 𝑦𝐷)
543psrbagf 19132 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝐷) → 𝑧:𝐼⟶ℕ0)
5552, 48, 54syl2anc 690 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → 𝑧:𝐼⟶ℕ0)
5647simprd 477 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → 𝑧𝑟𝑦)
573psrbagcon 19138 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑦𝐷𝑧:𝐼⟶ℕ0𝑧𝑟𝑦)) → ((𝑦𝑓𝑧) ∈ 𝐷 ∧ (𝑦𝑓𝑧) ∘𝑟𝑦))
5852, 53, 55, 56, 57syl13anc 1319 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → ((𝑦𝑓𝑧) ∈ 𝐷 ∧ (𝑦𝑓𝑧) ∘𝑟𝑦))
5958simpld 473 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → (𝑦𝑓𝑧) ∈ 𝐷)
6051, 59ffvelrnd 6253 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → (𝑈‘(𝑦𝑓𝑧)) ∈ (Base‘𝑅))
612, 18ringcl 18330 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝑧) ∈ (Base‘𝑅) ∧ (𝑈‘(𝑦𝑓𝑧)) ∈ (Base‘𝑅)) → ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧))) ∈ (Base‘𝑅))
6242, 49, 60, 61syl3anc 1317 . . . . . 6 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧))) ∈ (Base‘𝑅))
63 eqid 2609 . . . . . 6 (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧)))) = (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧))))
6462, 63fmptd 6277 . . . . 5 ((𝜑𝑦𝐷) → (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧)))):{𝑔𝐷𝑔𝑟𝑦}⟶(Base‘𝑅))
65 eldifi 3693 . . . . . . . . . . 11 (𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {𝑦}) → 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦})
6665, 59sylan2 489 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {𝑦})) → (𝑦𝑓𝑧) ∈ 𝐷)
67 eqeq1 2613 . . . . . . . . . . . 12 (𝑥 = (𝑦𝑓𝑧) → (𝑥 = (𝐼 × {0}) ↔ (𝑦𝑓𝑧) = (𝐼 × {0})))
6867ifbid 4057 . . . . . . . . . . 11 (𝑥 = (𝑦𝑓𝑧) → if(𝑥 = (𝐼 × {0}), 1 , 0 ) = if((𝑦𝑓𝑧) = (𝐼 × {0}), 1 , 0 ))
69 fvex 6098 . . . . . . . . . . . . 13 (1r𝑅) ∈ V
7010, 69eqeltri 2683 . . . . . . . . . . . 12 1 ∈ V
71 fvex 6098 . . . . . . . . . . . . 13 (0g𝑅) ∈ V
729, 71eqeltri 2683 . . . . . . . . . . . 12 0 ∈ V
7370, 72ifex 4105 . . . . . . . . . . 11 if((𝑦𝑓𝑧) = (𝐼 × {0}), 1 , 0 ) ∈ V
7468, 11, 73fvmpt 6176 . . . . . . . . . 10 ((𝑦𝑓𝑧) ∈ 𝐷 → (𝑈‘(𝑦𝑓𝑧)) = if((𝑦𝑓𝑧) = (𝐼 × {0}), 1 , 0 ))
7566, 74syl 17 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {𝑦})) → (𝑈‘(𝑦𝑓𝑧)) = if((𝑦𝑓𝑧) = (𝐼 × {0}), 1 , 0 ))
76 eldifsni 4260 . . . . . . . . . . . . 13 (𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {𝑦}) → 𝑧𝑦)
7776adantl 480 . . . . . . . . . . . 12 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {𝑦})) → 𝑧𝑦)
7877necomd 2836 . . . . . . . . . . 11 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {𝑦})) → 𝑦𝑧)
79 nn0sscn 11144 . . . . . . . . . . . . . . . 16 0 ⊆ ℂ
80 fss 5955 . . . . . . . . . . . . . . . 16 ((𝑦:𝐼⟶ℕ0 ∧ ℕ0 ⊆ ℂ) → 𝑦:𝐼⟶ℂ)
8125, 79, 80sylancl 692 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐷) → 𝑦:𝐼⟶ℂ)
8281adantr 479 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → 𝑦:𝐼⟶ℂ)
83 fss 5955 . . . . . . . . . . . . . . 15 ((𝑧:𝐼⟶ℕ0 ∧ ℕ0 ⊆ ℂ) → 𝑧:𝐼⟶ℂ)
8455, 79, 83sylancl 692 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → 𝑧:𝐼⟶ℂ)
85 ofsubeq0 10864 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑦:𝐼⟶ℂ ∧ 𝑧:𝐼⟶ℂ) → ((𝑦𝑓𝑧) = (𝐼 × {0}) ↔ 𝑦 = 𝑧))
8652, 82, 84, 85syl3anc 1317 . . . . . . . . . . . . 13 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → ((𝑦𝑓𝑧) = (𝐼 × {0}) ↔ 𝑦 = 𝑧))
8765, 86sylan2 489 . . . . . . . . . . . 12 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {𝑦})) → ((𝑦𝑓𝑧) = (𝐼 × {0}) ↔ 𝑦 = 𝑧))
8887necon3bbid 2818 . . . . . . . . . . 11 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {𝑦})) → (¬ (𝑦𝑓𝑧) = (𝐼 × {0}) ↔ 𝑦𝑧))
8978, 88mpbird 245 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {𝑦})) → ¬ (𝑦𝑓𝑧) = (𝐼 × {0}))
9089iffalsed 4046 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {𝑦})) → if((𝑦𝑓𝑧) = (𝐼 × {0}), 1 , 0 ) = 0 )
9175, 90eqtrd 2643 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {𝑦})) → (𝑈‘(𝑦𝑓𝑧)) = 0 )
9291oveq2d 6543 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {𝑦})) → ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧))) = ((𝑋𝑧)(.r𝑅) 0 ))
932, 18, 9ringrz 18357 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑋𝑧) ∈ (Base‘𝑅)) → ((𝑋𝑧)(.r𝑅) 0 ) = 0 )
9442, 49, 93syl2anc 690 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → ((𝑋𝑧)(.r𝑅) 0 ) = 0 )
9565, 94sylan2 489 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {𝑦})) → ((𝑋𝑧)(.r𝑅) 0 ) = 0 )
9692, 95eqtrd 2643 . . . . . 6 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {𝑦})) → ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧))) = 0 )
9796, 41suppss2 7193 . . . . 5 ((𝜑𝑦𝐷) → ((𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧)))) supp 0 ) ⊆ {𝑦})
98 mptexg 6367 . . . . . . 7 ({𝑔𝐷𝑔𝑟𝑦} ∈ V → (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧)))) ∈ V)
9941, 98syl 17 . . . . . 6 ((𝜑𝑦𝐷) → (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧)))) ∈ V)
100 funmpt 5826 . . . . . . 7 Fun (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧))))
101100a1i 11 . . . . . 6 ((𝜑𝑦𝐷) → Fun (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧)))))
10272a1i 11 . . . . . 6 ((𝜑𝑦𝐷) → 0 ∈ V)
103 snfi 7900 . . . . . . 7 {𝑦} ∈ Fin
104103a1i 11 . . . . . 6 ((𝜑𝑦𝐷) → {𝑦} ∈ Fin)
105 suppssfifsupp 8150 . . . . . 6 ((((𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧)))) ∈ V ∧ Fun (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧)))) ∧ 0 ∈ V) ∧ ({𝑦} ∈ Fin ∧ ((𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧)))) supp 0 ) ⊆ {𝑦})) → (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧)))) finSupp 0 )
10699, 101, 102, 104, 97, 105syl32anc 1325 . . . . 5 ((𝜑𝑦𝐷) → (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧)))) finSupp 0 )
1072, 9, 38, 41, 64, 97, 106gsumres 18083 . . . 4 ((𝜑𝑦𝐷) → (𝑅 Σg ((𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧)))) ↾ {𝑦})) = (𝑅 Σg (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧))))))
1086adantr 479 . . . . . 6 ((𝜑𝑦𝐷) → 𝑅 ∈ Ring)
109 ringmnd 18325 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
110108, 109syl 17 . . . . 5 ((𝜑𝑦𝐷) → 𝑅 ∈ Mnd)
111 eqid 2609 . . . . . . . . . . 11 𝑦 = 𝑦
112 ofsubeq0 10864 . . . . . . . . . . . 12 ((𝐼𝑉𝑦:𝐼⟶ℂ ∧ 𝑦:𝐼⟶ℂ) → ((𝑦𝑓𝑦) = (𝐼 × {0}) ↔ 𝑦 = 𝑦))
11323, 81, 81, 112syl3anc 1317 . . . . . . . . . . 11 ((𝜑𝑦𝐷) → ((𝑦𝑓𝑦) = (𝐼 × {0}) ↔ 𝑦 = 𝑦))
114111, 113mpbiri 246 . . . . . . . . . 10 ((𝜑𝑦𝐷) → (𝑦𝑓𝑦) = (𝐼 × {0}))
115114fveq2d 6092 . . . . . . . . 9 ((𝜑𝑦𝐷) → (𝑈‘(𝑦𝑓𝑦)) = (𝑈‘(𝐼 × {0})))
116 fconstmpt 5075 . . . . . . . . . . . 12 (𝐼 × {0}) = (𝑤𝐼 ↦ 0)
1173fczpsrbag 19134 . . . . . . . . . . . . 13 (𝐼𝑉 → (𝑤𝐼 ↦ 0) ∈ 𝐷)
1188, 117syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑤𝐼 ↦ 0) ∈ 𝐷)
119116, 118syl5eqel 2691 . . . . . . . . . . 11 (𝜑 → (𝐼 × {0}) ∈ 𝐷)
120119adantr 479 . . . . . . . . . 10 ((𝜑𝑦𝐷) → (𝐼 × {0}) ∈ 𝐷)
121 iftrue 4041 . . . . . . . . . . 11 (𝑥 = (𝐼 × {0}) → if(𝑥 = (𝐼 × {0}), 1 , 0 ) = 1 )
122121, 11, 70fvmpt 6176 . . . . . . . . . 10 ((𝐼 × {0}) ∈ 𝐷 → (𝑈‘(𝐼 × {0})) = 1 )
123120, 122syl 17 . . . . . . . . 9 ((𝜑𝑦𝐷) → (𝑈‘(𝐼 × {0})) = 1 )
124115, 123eqtrd 2643 . . . . . . . 8 ((𝜑𝑦𝐷) → (𝑈‘(𝑦𝑓𝑦)) = 1 )
125124oveq2d 6543 . . . . . . 7 ((𝜑𝑦𝐷) → ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦𝑓𝑦))) = ((𝑋𝑦)(.r𝑅) 1 ))
12616ffvelrnda 6252 . . . . . . . 8 ((𝜑𝑦𝐷) → (𝑋𝑦) ∈ (Base‘𝑅))
1272, 18, 10ringridm 18341 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑋𝑦) ∈ (Base‘𝑅)) → ((𝑋𝑦)(.r𝑅) 1 ) = (𝑋𝑦))
128108, 126, 127syl2anc 690 . . . . . . 7 ((𝜑𝑦𝐷) → ((𝑋𝑦)(.r𝑅) 1 ) = (𝑋𝑦))
129125, 128eqtrd 2643 . . . . . 6 ((𝜑𝑦𝐷) → ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦𝑓𝑦))) = (𝑋𝑦))
130129, 126eqeltrd 2687 . . . . 5 ((𝜑𝑦𝐷) → ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦𝑓𝑦))) ∈ (Base‘𝑅))
131 fveq2 6088 . . . . . . 7 (𝑧 = 𝑦 → (𝑋𝑧) = (𝑋𝑦))
132 oveq2 6535 . . . . . . . 8 (𝑧 = 𝑦 → (𝑦𝑓𝑧) = (𝑦𝑓𝑦))
133132fveq2d 6092 . . . . . . 7 (𝑧 = 𝑦 → (𝑈‘(𝑦𝑓𝑧)) = (𝑈‘(𝑦𝑓𝑦)))
134131, 133oveq12d 6545 . . . . . 6 (𝑧 = 𝑦 → ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧))) = ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦𝑓𝑦))))
1352, 134gsumsn 18123 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝑦𝐷 ∧ ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦𝑓𝑦))) ∈ (Base‘𝑅)) → (𝑅 Σg (𝑧 ∈ {𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧))))) = ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦𝑓𝑦))))
136110, 21, 130, 135syl3anc 1317 . . . 4 ((𝜑𝑦𝐷) → (𝑅 Σg (𝑧 ∈ {𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧))))) = ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦𝑓𝑦))))
13735, 107, 1363eqtr3d 2651 . . 3 ((𝜑𝑦𝐷) → (𝑅 Σg (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧))))) = ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦𝑓𝑦))))
13822, 137, 1293eqtrd 2647 . 2 ((𝜑𝑦𝐷) → ((𝑋 · 𝑈)‘𝑦) = (𝑋𝑦))
13915, 17, 138eqfnfvd 6207 1 (𝜑 → (𝑋 · 𝑈) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  wne 2779  {crab 2899  Vcvv 3172  cdif 3536  wss 3539  ifcif 4035  {csn 4124   class class class wbr 4577  cmpt 4637   × cxp 5026  ccnv 5027  cres 5030  cima 5031  Fun wfun 5784  wf 5786  cfv 5790  (class class class)co 6527  𝑓 cof 6770  𝑟 cofr 6771   supp csupp 7159  𝑚 cmap 7721  Fincfn 7818   finSupp cfsupp 8135  cc 9790  0cc0 9792  cle 9931  cmin 10117  cn 10867  0cn0 11139  Basecbs 15641  .rcmulr 15715  0gc0g 15869   Σg cgsu 15870  Mndcmnd 17063  CMndccmn 17962  1rcur 18270  Ringcrg 18316   mPwSer cmps 19118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-inf2 8398  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6772  df-ofr 6773  df-om 6935  df-1st 7036  df-2nd 7037  df-supp 7160  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-er 7606  df-map 7723  df-pm 7724  df-ixp 7772  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fsupp 8136  df-oi 8275  df-card 8625  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-2 10926  df-3 10927  df-4 10928  df-5 10929  df-6 10930  df-7 10931  df-8 10932  df-9 10933  df-n0 11140  df-z 11211  df-uz 11520  df-fz 12153  df-fzo 12290  df-seq 12619  df-hash 12935  df-struct 15643  df-ndx 15644  df-slot 15645  df-base 15646  df-sets 15647  df-plusg 15727  df-mulr 15728  df-sca 15730  df-vsca 15731  df-tset 15733  df-0g 15871  df-gsum 15872  df-mgm 17011  df-sgrp 17053  df-mnd 17064  df-grp 17194  df-minusg 17195  df-mulg 17310  df-cntz 17519  df-cmn 17964  df-abl 17965  df-mgp 18259  df-ur 18271  df-ring 18318  df-psr 19123
This theorem is referenced by:  psrring  19178  psr1  19179
  Copyright terms: Public domain W3C validator