MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrvscacl Structured version   Visualization version   GIF version

Theorem psrvscacl 19160
Description: Closure of the power series scalar multiplication operation. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrvscacl.s 𝑆 = (𝐼 mPwSer 𝑅)
psrvscacl.n · = ( ·𝑠𝑆)
psrvscacl.k 𝐾 = (Base‘𝑅)
psrvscacl.b 𝐵 = (Base‘𝑆)
psrvscacl.r (𝜑𝑅 ∈ Ring)
psrvscacl.x (𝜑𝑋𝐾)
psrvscacl.y (𝜑𝐹𝐵)
Assertion
Ref Expression
psrvscacl (𝜑 → (𝑋 · 𝐹) ∈ 𝐵)

Proof of Theorem psrvscacl
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrvscacl.r . . . . 5 (𝜑𝑅 ∈ Ring)
2 psrvscacl.k . . . . . . 7 𝐾 = (Base‘𝑅)
3 eqid 2609 . . . . . . 7 (.r𝑅) = (.r𝑅)
42, 3ringcl 18330 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑥𝐾𝑦𝐾) → (𝑥(.r𝑅)𝑦) ∈ 𝐾)
543expb 1257 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥𝐾𝑦𝐾)) → (𝑥(.r𝑅)𝑦) ∈ 𝐾)
61, 5sylan 486 . . . 4 ((𝜑 ∧ (𝑥𝐾𝑦𝐾)) → (𝑥(.r𝑅)𝑦) ∈ 𝐾)
7 psrvscacl.x . . . . 5 (𝜑𝑋𝐾)
8 fconst6g 5992 . . . . 5 (𝑋𝐾 → ({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}):{𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶𝐾)
97, 8syl 17 . . . 4 (𝜑 → ({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}):{𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶𝐾)
10 psrvscacl.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
11 eqid 2609 . . . . 5 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
12 psrvscacl.b . . . . 5 𝐵 = (Base‘𝑆)
13 psrvscacl.y . . . . 5 (𝜑𝐹𝐵)
1410, 2, 11, 12, 13psrelbas 19146 . . . 4 (𝜑𝐹:{𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶𝐾)
15 ovex 6555 . . . . . 6 (ℕ0𝑚 𝐼) ∈ V
1615rabex 4735 . . . . 5 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V
1716a1i 11 . . . 4 (𝜑 → {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V)
18 inidm 3783 . . . 4 ({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∩ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
196, 9, 14, 17, 17, 18off 6787 . . 3 (𝜑 → (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘𝑓 (.r𝑅)𝐹):{𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶𝐾)
20 fvex 6098 . . . . 5 (Base‘𝑅) ∈ V
212, 20eqeltri 2683 . . . 4 𝐾 ∈ V
2221, 16elmap 7749 . . 3 ((({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘𝑓 (.r𝑅)𝐹) ∈ (𝐾𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ↔ (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘𝑓 (.r𝑅)𝐹):{𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶𝐾)
2319, 22sylibr 222 . 2 (𝜑 → (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘𝑓 (.r𝑅)𝐹) ∈ (𝐾𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
24 psrvscacl.n . . 3 · = ( ·𝑠𝑆)
2510, 24, 2, 12, 3, 11, 7, 13psrvsca 19158 . 2 (𝜑 → (𝑋 · 𝐹) = (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘𝑓 (.r𝑅)𝐹))
26 reldmpsr 19128 . . . . . 6 Rel dom mPwSer
2726, 10, 12elbasov 15695 . . . . 5 (𝐹𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
2813, 27syl 17 . . . 4 (𝜑 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
2928simpld 473 . . 3 (𝜑𝐼 ∈ V)
3010, 2, 11, 12, 29psrbas 19145 . 2 (𝜑𝐵 = (𝐾𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
3123, 25, 303eltr4d 2702 1 (𝜑 → (𝑋 · 𝐹) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  {crab 2899  Vcvv 3172  {csn 4124   × cxp 5026  ccnv 5027  cima 5031  wf 5786  cfv 5790  (class class class)co 6527  𝑓 cof 6770  𝑚 cmap 7721  Fincfn 7818  cn 10867  0cn0 11139  Basecbs 15641  .rcmulr 15715   ·𝑠 cvsca 15718  Ringcrg 18316   mPwSer cmps 19118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6772  df-om 6935  df-1st 7036  df-2nd 7037  df-supp 7160  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-map 7723  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fsupp 8136  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-2 10926  df-3 10927  df-4 10928  df-5 10929  df-6 10930  df-7 10931  df-8 10932  df-9 10933  df-n0 11140  df-z 11211  df-uz 11520  df-fz 12153  df-struct 15643  df-ndx 15644  df-slot 15645  df-base 15646  df-sets 15647  df-plusg 15727  df-mulr 15728  df-sca 15730  df-vsca 15731  df-tset 15733  df-mgm 17011  df-sgrp 17053  df-mnd 17064  df-mgp 18259  df-ring 18318  df-psr 19123
This theorem is referenced by:  psrlmod  19168  psrass23l  19175  psrass23  19177  mpllsslem  19202
  Copyright terms: Public domain W3C validator