MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrvscafval Structured version   Visualization version   GIF version

Theorem psrvscafval 19330
Description: The scalar multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
psrvsca.s 𝑆 = (𝐼 mPwSer 𝑅)
psrvsca.n = ( ·𝑠𝑆)
psrvsca.k 𝐾 = (Base‘𝑅)
psrvsca.b 𝐵 = (Base‘𝑆)
psrvsca.m · = (.r𝑅)
psrvsca.d 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrvscafval = (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓))
Distinct variable groups:   𝑥,𝑓,𝐵   𝑓,,𝐼,𝑥   𝑓,𝐾,𝑥   𝐷,𝑓,𝑥   𝑅,𝑓,𝑥   · ,𝑓,𝑥   ,𝑓,𝑥
Allowed substitution hints:   𝐵()   𝐷()   𝑅()   𝑆(𝑥,𝑓,)   ()   · ()   𝐾()

Proof of Theorem psrvscafval
Dummy variables 𝑔 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrvsca.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
2 psrvsca.k . . . . 5 𝐾 = (Base‘𝑅)
3 eqid 2621 . . . . 5 (+g𝑅) = (+g𝑅)
4 psrvsca.m . . . . 5 · = (.r𝑅)
5 eqid 2621 . . . . 5 (TopOpen‘𝑅) = (TopOpen‘𝑅)
6 psrvsca.d . . . . 5 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
7 psrvsca.b . . . . . 6 𝐵 = (Base‘𝑆)
8 simpl 473 . . . . . 6 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝐼 ∈ V)
91, 2, 6, 7, 8psrbas 19318 . . . . 5 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝐵 = (𝐾𝑚 𝐷))
10 eqid 2621 . . . . . 6 (+g𝑆) = (+g𝑆)
111, 7, 3, 10psrplusg 19321 . . . . 5 (+g𝑆) = ( ∘𝑓 (+g𝑅) ↾ (𝐵 × 𝐵))
12 eqid 2621 . . . . . 6 (.r𝑆) = (.r𝑆)
131, 7, 4, 12, 6psrmulr 19324 . . . . 5 (.r𝑆) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘𝑓𝑥)))))))
14 eqid 2621 . . . . 5 (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓)) = (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓))
15 eqidd 2622 . . . . 5 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → (∏t‘(𝐷 × {(TopOpen‘𝑅)})) = (∏t‘(𝐷 × {(TopOpen‘𝑅)})))
16 simpr 477 . . . . 5 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝑅 ∈ V)
171, 2, 3, 4, 5, 6, 9, 11, 13, 14, 15, 8, 16psrval 19302 . . . 4 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝑆 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}))
1817fveq2d 6162 . . 3 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → ( ·𝑠𝑆) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})))
19 psrvsca.n . . 3 = ( ·𝑠𝑆)
20 fvex 6168 . . . . . 6 (Base‘𝑅) ∈ V
212, 20eqeltri 2694 . . . . 5 𝐾 ∈ V
22 fvex 6168 . . . . . 6 (Base‘𝑆) ∈ V
237, 22eqeltri 2694 . . . . 5 𝐵 ∈ V
2421, 23mpt2ex 7207 . . . 4 (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓)) ∈ V
25 psrvalstr 19303 . . . . 5 ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}) Struct ⟨1, 9⟩
26 vscaid 15956 . . . . 5 ·𝑠 = Slot ( ·𝑠 ‘ndx)
27 snsstp2 4323 . . . . . 6 {⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓))⟩} ⊆ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}
28 ssun2 3761 . . . . . 6 {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩} ⊆ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})
2927, 28sstri 3597 . . . . 5 {⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓))⟩} ⊆ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})
3025, 26, 29strfv 15847 . . . 4 ((𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓)) ∈ V → (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓)) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})))
3124, 30ax-mp 5 . . 3 (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓)) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}))
3218, 19, 313eqtr4g 2680 . 2 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → = (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓)))
33 eqid 2621 . . . . . 6 ∅ = ∅
34 fn0 5978 . . . . . 6 (∅ Fn ∅ ↔ ∅ = ∅)
3533, 34mpbir 221 . . . . 5 ∅ Fn ∅
36 reldmpsr 19301 . . . . . . . . . 10 Rel dom mPwSer
3736ovprc 6648 . . . . . . . . 9 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) = ∅)
381, 37syl5eq 2667 . . . . . . . 8 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝑆 = ∅)
3938fveq2d 6162 . . . . . . 7 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → ( ·𝑠𝑆) = ( ·𝑠 ‘∅))
40 df-vsca 15898 . . . . . . . 8 ·𝑠 = Slot 6
4140str0 15851 . . . . . . 7 ∅ = ( ·𝑠 ‘∅)
4239, 19, 413eqtr4g 2680 . . . . . 6 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → = ∅)
4336, 1, 7elbasov 15861 . . . . . . . . . 10 (𝑓𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
4443con3i 150 . . . . . . . . 9 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → ¬ 𝑓𝐵)
4544eq0rdv 3957 . . . . . . . 8 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝐵 = ∅)
4645xpeq2d 5109 . . . . . . 7 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐾 × 𝐵) = (𝐾 × ∅))
47 xp0 5521 . . . . . . 7 (𝐾 × ∅) = ∅
4846, 47syl6eq 2671 . . . . . 6 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐾 × 𝐵) = ∅)
4942, 48fneq12d 5951 . . . . 5 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → ( Fn (𝐾 × 𝐵) ↔ ∅ Fn ∅))
5035, 49mpbiri 248 . . . 4 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → Fn (𝐾 × 𝐵))
51 fnov 6733 . . . 4 ( Fn (𝐾 × 𝐵) ↔ = (𝑥𝐾, 𝑓𝐵 ↦ (𝑥 𝑓)))
5250, 51sylib 208 . . 3 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → = (𝑥𝐾, 𝑓𝐵 ↦ (𝑥 𝑓)))
5344pm2.21d 118 . . . . . 6 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝑓𝐵 → ((𝐷 × {𝑥}) ∘𝑓 · 𝑓) = (𝑥 𝑓)))
5453a1d 25 . . . . 5 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝑥𝐾 → (𝑓𝐵 → ((𝐷 × {𝑥}) ∘𝑓 · 𝑓) = (𝑥 𝑓))))
55543imp 1254 . . . 4 ((¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) ∧ 𝑥𝐾𝑓𝐵) → ((𝐷 × {𝑥}) ∘𝑓 · 𝑓) = (𝑥 𝑓))
5655mpt2eq3dva 6684 . . 3 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓)) = (𝑥𝐾, 𝑓𝐵 ↦ (𝑥 𝑓)))
5752, 56eqtr4d 2658 . 2 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → = (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓)))
5832, 57pm2.61i 176 1 = (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1480  wcel 1987  {crab 2912  Vcvv 3190  cun 3558  c0 3897  {csn 4155  {ctp 4159  cop 4161   × cxp 5082  ccnv 5083  cima 5087   Fn wfn 5852  cfv 5857  (class class class)co 6615  cmpt2 6617  𝑓 cof 6860  𝑚 cmap 7817  Fincfn 7915  1c1 9897  cn 10980  6c6 11034  9c9 11037  0cn0 11252  ndxcnx 15797  Basecbs 15800  +gcplusg 15881  .rcmulr 15882  Scalarcsca 15884   ·𝑠 cvsca 15885  TopSetcts 15887  TopOpenctopn 16022  tcpt 16039   mPwSer cmps 19291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-of 6862  df-om 7028  df-1st 7128  df-2nd 7129  df-supp 7256  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-er 7702  df-map 7819  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-fsupp 8236  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-5 11042  df-6 11043  df-7 11044  df-8 11045  df-9 11046  df-n0 11253  df-z 11338  df-uz 11648  df-fz 12285  df-struct 15802  df-ndx 15803  df-slot 15804  df-base 15805  df-plusg 15894  df-mulr 15895  df-sca 15897  df-vsca 15898  df-tset 15900  df-psr 19296
This theorem is referenced by:  psrvsca  19331
  Copyright terms: Public domain W3C validator