![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psseq2i | Structured version Visualization version GIF version |
Description: An equality inference for the proper subclass relationship. (Contributed by NM, 9-Jun-2004.) |
Ref | Expression |
---|---|
psseq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
psseq2i | ⊢ (𝐶 ⊊ 𝐴 ↔ 𝐶 ⊊ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psseq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | psseq2 3802 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ⊊ 𝐴 ↔ 𝐶 ⊊ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ⊊ 𝐴 ↔ 𝐶 ⊊ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1596 ⊊ wpss 3681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-clab 2711 df-cleq 2717 df-clel 2720 df-ne 2897 df-in 3687 df-ss 3694 df-pss 3696 |
This theorem is referenced by: psseq12i 3805 disjpss 4136 infeq5i 8646 |
Copyright terms: Public domain | W3C validator |