MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psseq2i Structured version   Visualization version   GIF version

Theorem psseq2i 3804
Description: An equality inference for the proper subclass relationship. (Contributed by NM, 9-Jun-2004.)
Hypothesis
Ref Expression
psseq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
psseq2i (𝐶𝐴𝐶𝐵)

Proof of Theorem psseq2i
StepHypRef Expression
1 psseq1i.1 . 2 𝐴 = 𝐵
2 psseq2 3802 . 2 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
31, 2ax-mp 5 1 (𝐶𝐴𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 196   = wceq 1596  wpss 3681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-clab 2711  df-cleq 2717  df-clel 2720  df-ne 2897  df-in 3687  df-ss 3694  df-pss 3696
This theorem is referenced by:  psseq12i  3805  disjpss  4136  infeq5i  8646
  Copyright terms: Public domain W3C validator