MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psslinpr Structured version   Visualization version   GIF version

Theorem psslinpr 9709
Description: Proper subset is a linear ordering on positive reals. Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 25-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
psslinpr ((𝐴P𝐵P) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))

Proof of Theorem psslinpr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elprnq 9669 . . . . . . . . . . . . 13 ((𝐴P𝑥𝐴) → 𝑥Q)
2 prub 9672 . . . . . . . . . . . . 13 (((𝐵P𝑦𝐵) ∧ 𝑥Q) → (¬ 𝑥𝐵𝑦 <Q 𝑥))
31, 2sylan2 489 . . . . . . . . . . . 12 (((𝐵P𝑦𝐵) ∧ (𝐴P𝑥𝐴)) → (¬ 𝑥𝐵𝑦 <Q 𝑥))
4 prcdnq 9671 . . . . . . . . . . . . 13 ((𝐴P𝑥𝐴) → (𝑦 <Q 𝑥𝑦𝐴))
54adantl 480 . . . . . . . . . . . 12 (((𝐵P𝑦𝐵) ∧ (𝐴P𝑥𝐴)) → (𝑦 <Q 𝑥𝑦𝐴))
63, 5syld 45 . . . . . . . . . . 11 (((𝐵P𝑦𝐵) ∧ (𝐴P𝑥𝐴)) → (¬ 𝑥𝐵𝑦𝐴))
76exp43 637 . . . . . . . . . 10 (𝐵P → (𝑦𝐵 → (𝐴P → (𝑥𝐴 → (¬ 𝑥𝐵𝑦𝐴)))))
87com3r 84 . . . . . . . . 9 (𝐴P → (𝐵P → (𝑦𝐵 → (𝑥𝐴 → (¬ 𝑥𝐵𝑦𝐴)))))
98imp 443 . . . . . . . 8 ((𝐴P𝐵P) → (𝑦𝐵 → (𝑥𝐴 → (¬ 𝑥𝐵𝑦𝐴))))
109imp4a 611 . . . . . . 7 ((𝐴P𝐵P) → (𝑦𝐵 → ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → 𝑦𝐴)))
1110com23 83 . . . . . 6 ((𝐴P𝐵P) → ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → (𝑦𝐵𝑦𝐴)))
1211alrimdv 1843 . . . . 5 ((𝐴P𝐵P) → ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → ∀𝑦(𝑦𝐵𝑦𝐴)))
1312exlimdv 1847 . . . 4 ((𝐴P𝐵P) → (∃𝑥(𝑥𝐴 ∧ ¬ 𝑥𝐵) → ∀𝑦(𝑦𝐵𝑦𝐴)))
14 nss 3625 . . . . 5 𝐴𝐵 ↔ ∃𝑥(𝑥𝐴 ∧ ¬ 𝑥𝐵))
15 sspss 3667 . . . . 5 (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵))
1614, 15xchnxbi 320 . . . 4 (¬ (𝐴𝐵𝐴 = 𝐵) ↔ ∃𝑥(𝑥𝐴 ∧ ¬ 𝑥𝐵))
17 sspss 3667 . . . . 5 (𝐵𝐴 ↔ (𝐵𝐴𝐵 = 𝐴))
18 dfss2 3556 . . . . 5 (𝐵𝐴 ↔ ∀𝑦(𝑦𝐵𝑦𝐴))
1917, 18bitr3i 264 . . . 4 ((𝐵𝐴𝐵 = 𝐴) ↔ ∀𝑦(𝑦𝐵𝑦𝐴))
2013, 16, 193imtr4g 283 . . 3 ((𝐴P𝐵P) → (¬ (𝐴𝐵𝐴 = 𝐵) → (𝐵𝐴𝐵 = 𝐴)))
2120orrd 391 . 2 ((𝐴P𝐵P) → ((𝐴𝐵𝐴 = 𝐵) ∨ (𝐵𝐴𝐵 = 𝐴)))
22 df-3or 1031 . . 3 ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) ↔ ((𝐴𝐵𝐴 = 𝐵) ∨ 𝐵𝐴))
23 or32 547 . . 3 (((𝐴𝐵𝐴 = 𝐵) ∨ 𝐵𝐴) ↔ ((𝐴𝐵𝐵𝐴) ∨ 𝐴 = 𝐵))
24 orordir 551 . . . 4 (((𝐴𝐵𝐵𝐴) ∨ 𝐴 = 𝐵) ↔ ((𝐴𝐵𝐴 = 𝐵) ∨ (𝐵𝐴𝐴 = 𝐵)))
25 eqcom 2616 . . . . . 6 (𝐵 = 𝐴𝐴 = 𝐵)
2625orbi2i 539 . . . . 5 ((𝐵𝐴𝐵 = 𝐴) ↔ (𝐵𝐴𝐴 = 𝐵))
2726orbi2i 539 . . . 4 (((𝐴𝐵𝐴 = 𝐵) ∨ (𝐵𝐴𝐵 = 𝐴)) ↔ ((𝐴𝐵𝐴 = 𝐵) ∨ (𝐵𝐴𝐴 = 𝐵)))
2824, 27bitr4i 265 . . 3 (((𝐴𝐵𝐵𝐴) ∨ 𝐴 = 𝐵) ↔ ((𝐴𝐵𝐴 = 𝐵) ∨ (𝐵𝐴𝐵 = 𝐴)))
2922, 23, 283bitri 284 . 2 ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) ↔ ((𝐴𝐵𝐴 = 𝐵) ∨ (𝐵𝐴𝐵 = 𝐴)))
3021, 29sylibr 222 1 ((𝐴P𝐵P) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 381  wa 382  w3o 1029  wal 1472   = wceq 1474  wex 1694  wcel 1976  wss 3539  wpss 3540   class class class wbr 4577  Qcnq 9530   <Q cltq 9536  Pcnp 9537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-oadd 7428  df-omul 7429  df-er 7606  df-ni 9550  df-mi 9552  df-lti 9553  df-ltpq 9588  df-enq 9589  df-nq 9590  df-ltnq 9596  df-np 9659
This theorem is referenced by:  ltsopr  9710
  Copyright terms: Public domain W3C validator