MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psssdm Structured version   Visualization version   GIF version

Theorem psssdm 17156
Description: Field of a subposet. (Contributed by FL, 19-Sep-2011.) (Revised by Mario Carneiro, 9-Sep-2015.)
Hypothesis
Ref Expression
psssdm.1 𝑋 = dom 𝑅
Assertion
Ref Expression
psssdm ((𝑅 ∈ PosetRel ∧ 𝐴𝑋) → dom (𝑅 ∩ (𝐴 × 𝐴)) = 𝐴)

Proof of Theorem psssdm
StepHypRef Expression
1 psssdm.1 . . 3 𝑋 = dom 𝑅
21psssdm2 17155 . 2 (𝑅 ∈ PosetRel → dom (𝑅 ∩ (𝐴 × 𝐴)) = (𝑋𝐴))
3 sseqin2 3801 . . 3 (𝐴𝑋 ↔ (𝑋𝐴) = 𝐴)
43biimpi 206 . 2 (𝐴𝑋 → (𝑋𝐴) = 𝐴)
52, 4sylan9eq 2675 1 ((𝑅 ∈ PosetRel ∧ 𝐴𝑋) → dom (𝑅 ∩ (𝐴 × 𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  cin 3559  wss 3560   × cxp 5082  dom cdm 5084  PosetRelcps 17138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pr 4877
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ps 17140
This theorem is referenced by:  ordtrest2lem  20947  ordtrest2  20948  icopnfhmeo  22682  iccpnfhmeo  22684  xrhmeo  22685  xrge0iifhmeo  29806
  Copyright terms: Public domain W3C validator