![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pssssd | Structured version Visualization version GIF version |
Description: Deduce subclass from proper subclass. (Contributed by NM, 29-Feb-1996.) |
Ref | Expression |
---|---|
pssssd.1 | ⊢ (𝜑 → 𝐴 ⊊ 𝐵) |
Ref | Expression |
---|---|
pssssd | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pssssd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊊ 𝐵) | |
2 | pssss 3832 | . 2 ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3703 ⊊ wpss 3704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-pss 3719 |
This theorem is referenced by: fin23lem36 9333 fin23lem39 9335 canthnumlem 9633 canthp1lem2 9638 elprnq 9976 npomex 9981 prlem934 10018 ltexprlem7 10027 wuncn 10154 mrieqv2d 16472 slwpss 18198 pgpfac1lem5 18649 lbspss 19255 lsppratlem1 19320 lsppratlem3 19322 lsppratlem4 19323 lrelat 34773 lsatcvatlem 34808 |
Copyright terms: Public domain | W3C validator |