MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pssssd Structured version   Visualization version   GIF version

Theorem pssssd 3834
Description: Deduce subclass from proper subclass. (Contributed by NM, 29-Feb-1996.)
Hypothesis
Ref Expression
pssssd.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
pssssd (𝜑𝐴𝐵)

Proof of Theorem pssssd
StepHypRef Expression
1 pssssd.1 . 2 (𝜑𝐴𝐵)
2 pssss 3832 . 2 (𝐴𝐵𝐴𝐵)
31, 2syl 17 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3703  wpss 3704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 385  df-pss 3719
This theorem is referenced by:  fin23lem36  9333  fin23lem39  9335  canthnumlem  9633  canthp1lem2  9638  elprnq  9976  npomex  9981  prlem934  10018  ltexprlem7  10027  wuncn  10154  mrieqv2d  16472  slwpss  18198  pgpfac1lem5  18649  lbspss  19255  lsppratlem1  19320  lsppratlem3  19322  lsppratlem4  19323  lrelat  34773  lsatcvatlem  34808
  Copyright terms: Public domain W3C validator