Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubclinN Structured version   Visualization version   GIF version

Theorem psubclinN 37078
Description: The intersection of two closed subspaces is closed. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
Hypothesis
Ref Expression
psubclin.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
psubclinN ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → (𝑋𝑌) ∈ 𝐶)

Proof of Theorem psubclinN
StepHypRef Expression
1 simp1 1132 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → 𝐾 ∈ HL)
2 hlclat 36488 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ CLat)
323ad2ant1 1129 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → 𝐾 ∈ CLat)
4 eqid 2821 . . . . . . . 8 (Atoms‘𝐾) = (Atoms‘𝐾)
5 psubclin.c . . . . . . . 8 𝐶 = (PSubCl‘𝐾)
64, 5psubclssatN 37071 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐶) → 𝑋 ⊆ (Atoms‘𝐾))
763adant3 1128 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → 𝑋 ⊆ (Atoms‘𝐾))
8 eqid 2821 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
98, 4atssbase 36420 . . . . . 6 (Atoms‘𝐾) ⊆ (Base‘𝐾)
107, 9sstrdi 3978 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → 𝑋 ⊆ (Base‘𝐾))
11 eqid 2821 . . . . . 6 (lub‘𝐾) = (lub‘𝐾)
128, 11clatlubcl 17716 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑋 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾))
133, 10, 12syl2anc 586 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾))
144, 5psubclssatN 37071 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑌𝐶) → 𝑌 ⊆ (Atoms‘𝐾))
15143adant2 1127 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → 𝑌 ⊆ (Atoms‘𝐾))
1615, 9sstrdi 3978 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → 𝑌 ⊆ (Base‘𝐾))
178, 11clatlubcl 17716 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑌 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾))
183, 16, 17syl2anc 586 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾))
19 eqid 2821 . . . . 5 (meet‘𝐾) = (meet‘𝐾)
20 eqid 2821 . . . . 5 (pmap‘𝐾) = (pmap‘𝐾)
218, 19, 4, 20pmapmeet 36903 . . . 4 ((𝐾 ∈ HL ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌))) = (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))))
221, 13, 18, 21syl3anc 1367 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌))) = (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))))
2311, 20, 5pmapidclN 37072 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐶) → ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) = 𝑋)
24233adant3 1128 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) = 𝑋)
2511, 20, 5pmapidclN 37072 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝐶) → ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)) = 𝑌)
26253adant2 1127 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)) = 𝑌)
2724, 26ineq12d 4189 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))) = (𝑋𝑌))
2822, 27eqtrd 2856 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌))) = (𝑋𝑌))
29 hllat 36493 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
30293ad2ant1 1129 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → 𝐾 ∈ Lat)
318, 19latmcl 17656 . . . 4 ((𝐾 ∈ Lat ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾)) → (((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌)) ∈ (Base‘𝐾))
3230, 13, 18, 31syl3anc 1367 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → (((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌)) ∈ (Base‘𝐾))
338, 20, 5pmapsubclN 37076 . . 3 ((𝐾 ∈ HL ∧ (((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌)) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌))) ∈ 𝐶)
341, 32, 33syl2anc 586 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌))) ∈ 𝐶)
3528, 34eqeltrrd 2914 1 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → (𝑋𝑌) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1533  wcel 2110  cin 3934  wss 3935  cfv 6349  (class class class)co 7150  Basecbs 16477  lubclub 17546  meetcmee 17549  Latclat 17649  CLatccla 17711  Atomscatm 36393  HLchlt 36480  pmapcpmap 36627  PSubClcpscN 37064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-riotaBAD 36083
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-undef 7933  df-proset 17532  df-poset 17550  df-plt 17562  df-lub 17578  df-glb 17579  df-join 17580  df-meet 17581  df-p0 17643  df-p1 17644  df-lat 17650  df-clat 17712  df-oposet 36306  df-ol 36308  df-oml 36309  df-covers 36396  df-ats 36397  df-atl 36428  df-cvlat 36452  df-hlat 36481  df-pmap 36634  df-polarityN 37033  df-psubclN 37065
This theorem is referenced by:  osumcllem9N  37094
  Copyright terms: Public domain W3C validator