Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubspset Structured version   Visualization version   GIF version

Theorem psubspset 35533
Description: The set of projective subspaces in a Hilbert lattice. (Contributed by NM, 2-Oct-2011.)
Hypotheses
Ref Expression
psubspset.l = (le‘𝐾)
psubspset.j = (join‘𝐾)
psubspset.a 𝐴 = (Atoms‘𝐾)
psubspset.s 𝑆 = (PSubSp‘𝐾)
Assertion
Ref Expression
psubspset (𝐾𝐵𝑆 = {𝑠 ∣ (𝑠𝐴 ∧ ∀𝑝𝑠𝑞𝑠𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑠))})
Distinct variable groups:   𝑠,𝑟,𝐴   𝑞,𝑝,𝑟,𝑠,𝐾
Allowed substitution hints:   𝐴(𝑞,𝑝)   𝐵(𝑠,𝑟,𝑞,𝑝)   𝑆(𝑠,𝑟,𝑞,𝑝)   (𝑠,𝑟,𝑞,𝑝)   (𝑠,𝑟,𝑞,𝑝)

Proof of Theorem psubspset
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3352 . 2 (𝐾𝐵𝐾 ∈ V)
2 psubspset.s . . 3 𝑆 = (PSubSp‘𝐾)
3 fveq2 6352 . . . . . . . 8 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
4 psubspset.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
53, 4syl6eqr 2812 . . . . . . 7 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
65sseq2d 3774 . . . . . 6 (𝑘 = 𝐾 → (𝑠 ⊆ (Atoms‘𝑘) ↔ 𝑠𝐴))
7 fveq2 6352 . . . . . . . . . . . . 13 (𝑘 = 𝐾 → (join‘𝑘) = (join‘𝐾))
8 psubspset.j . . . . . . . . . . . . 13 = (join‘𝐾)
97, 8syl6eqr 2812 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (join‘𝑘) = )
109oveqd 6830 . . . . . . . . . . 11 (𝑘 = 𝐾 → (𝑝(join‘𝑘)𝑞) = (𝑝 𝑞))
1110breq2d 4816 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) ↔ 𝑟(le‘𝑘)(𝑝 𝑞)))
12 fveq2 6352 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
13 psubspset.l . . . . . . . . . . . 12 = (le‘𝐾)
1412, 13syl6eqr 2812 . . . . . . . . . . 11 (𝑘 = 𝐾 → (le‘𝑘) = )
1514breqd 4815 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑟(le‘𝑘)(𝑝 𝑞) ↔ 𝑟 (𝑝 𝑞)))
1611, 15bitrd 268 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) ↔ 𝑟 (𝑝 𝑞)))
1716imbi1d 330 . . . . . . . 8 (𝑘 = 𝐾 → ((𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) → 𝑟𝑠) ↔ (𝑟 (𝑝 𝑞) → 𝑟𝑠)))
185, 17raleqbidv 3291 . . . . . . 7 (𝑘 = 𝐾 → (∀𝑟 ∈ (Atoms‘𝑘)(𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) → 𝑟𝑠) ↔ ∀𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑠)))
19182ralbidv 3127 . . . . . 6 (𝑘 = 𝐾 → (∀𝑝𝑠𝑞𝑠𝑟 ∈ (Atoms‘𝑘)(𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) → 𝑟𝑠) ↔ ∀𝑝𝑠𝑞𝑠𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑠)))
206, 19anbi12d 749 . . . . 5 (𝑘 = 𝐾 → ((𝑠 ⊆ (Atoms‘𝑘) ∧ ∀𝑝𝑠𝑞𝑠𝑟 ∈ (Atoms‘𝑘)(𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) → 𝑟𝑠)) ↔ (𝑠𝐴 ∧ ∀𝑝𝑠𝑞𝑠𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑠))))
2120abbidv 2879 . . . 4 (𝑘 = 𝐾 → {𝑠 ∣ (𝑠 ⊆ (Atoms‘𝑘) ∧ ∀𝑝𝑠𝑞𝑠𝑟 ∈ (Atoms‘𝑘)(𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) → 𝑟𝑠))} = {𝑠 ∣ (𝑠𝐴 ∧ ∀𝑝𝑠𝑞𝑠𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑠))})
22 df-psubsp 35292 . . . 4 PSubSp = (𝑘 ∈ V ↦ {𝑠 ∣ (𝑠 ⊆ (Atoms‘𝑘) ∧ ∀𝑝𝑠𝑞𝑠𝑟 ∈ (Atoms‘𝑘)(𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) → 𝑟𝑠))})
23 fvex 6362 . . . . . . 7 (Atoms‘𝐾) ∈ V
244, 23eqeltri 2835 . . . . . 6 𝐴 ∈ V
2524pwex 4997 . . . . 5 𝒫 𝐴 ∈ V
26 selpw 4309 . . . . . . . 8 (𝑠 ∈ 𝒫 𝐴𝑠𝐴)
2726anbi1i 733 . . . . . . 7 ((𝑠 ∈ 𝒫 𝐴 ∧ ∀𝑝𝑠𝑞𝑠𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑠)) ↔ (𝑠𝐴 ∧ ∀𝑝𝑠𝑞𝑠𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑠)))
2827abbii 2877 . . . . . 6 {𝑠 ∣ (𝑠 ∈ 𝒫 𝐴 ∧ ∀𝑝𝑠𝑞𝑠𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑠))} = {𝑠 ∣ (𝑠𝐴 ∧ ∀𝑝𝑠𝑞𝑠𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑠))}
29 ssab2 3827 . . . . . 6 {𝑠 ∣ (𝑠 ∈ 𝒫 𝐴 ∧ ∀𝑝𝑠𝑞𝑠𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑠))} ⊆ 𝒫 𝐴
3028, 29eqsstr3i 3777 . . . . 5 {𝑠 ∣ (𝑠𝐴 ∧ ∀𝑝𝑠𝑞𝑠𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑠))} ⊆ 𝒫 𝐴
3125, 30ssexi 4955 . . . 4 {𝑠 ∣ (𝑠𝐴 ∧ ∀𝑝𝑠𝑞𝑠𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑠))} ∈ V
3221, 22, 31fvmpt 6444 . . 3 (𝐾 ∈ V → (PSubSp‘𝐾) = {𝑠 ∣ (𝑠𝐴 ∧ ∀𝑝𝑠𝑞𝑠𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑠))})
332, 32syl5eq 2806 . 2 (𝐾 ∈ V → 𝑆 = {𝑠 ∣ (𝑠𝐴 ∧ ∀𝑝𝑠𝑞𝑠𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑠))})
341, 33syl 17 1 (𝐾𝐵𝑆 = {𝑠 ∣ (𝑠𝐴 ∧ ∀𝑝𝑠𝑞𝑠𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑠))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  {cab 2746  wral 3050  Vcvv 3340  wss 3715  𝒫 cpw 4302   class class class wbr 4804  cfv 6049  (class class class)co 6813  lecple 16150  joincjn 17145  Atomscatm 35053  PSubSpcpsubsp 35285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-iota 6012  df-fun 6051  df-fv 6057  df-ov 6816  df-psubsp 35292
This theorem is referenced by:  ispsubsp  35534
  Copyright terms: Public domain W3C validator