MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcmpfi Structured version   Visualization version   GIF version

Theorem ptcmpfi 22423
Description: A topological product of finitely many compact spaces is compact. This weak version of Tychonoff's theorem does not require the axiom of choice. (Contributed by Mario Carneiro, 8-Feb-2015.)
Assertion
Ref Expression
ptcmpfi ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t𝐹) ∈ Comp)

Proof of Theorem ptcmpfi
Dummy variables 𝑣 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffn 6516 . . . . 5 (𝐹:𝐴⟶Comp → 𝐹 Fn 𝐴)
2 fnresdm 6468 . . . . 5 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
31, 2syl 17 . . . 4 (𝐹:𝐴⟶Comp → (𝐹𝐴) = 𝐹)
43adantl 484 . . 3 ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (𝐹𝐴) = 𝐹)
54fveq2d 6676 . 2 ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝐴)) = (∏t𝐹))
6 ssid 3991 . . . 4 𝐴𝐴
7 sseq1 3994 . . . . . 6 (𝑥 = ∅ → (𝑥𝐴 ↔ ∅ ⊆ 𝐴))
8 reseq2 5850 . . . . . . . . . 10 (𝑥 = ∅ → (𝐹𝑥) = (𝐹 ↾ ∅))
9 res0 5859 . . . . . . . . . 10 (𝐹 ↾ ∅) = ∅
108, 9syl6eq 2874 . . . . . . . . 9 (𝑥 = ∅ → (𝐹𝑥) = ∅)
1110fveq2d 6676 . . . . . . . 8 (𝑥 = ∅ → (∏t‘(𝐹𝑥)) = (∏t‘∅))
1211eleq1d 2899 . . . . . . 7 (𝑥 = ∅ → ((∏t‘(𝐹𝑥)) ∈ Comp ↔ (∏t‘∅) ∈ Comp))
1312imbi2d 343 . . . . . 6 (𝑥 = ∅ → (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑥)) ∈ Comp) ↔ ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘∅) ∈ Comp)))
147, 13imbi12d 347 . . . . 5 (𝑥 = ∅ → ((𝑥𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑥)) ∈ Comp)) ↔ (∅ ⊆ 𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘∅) ∈ Comp))))
15 sseq1 3994 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
16 reseq2 5850 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
1716fveq2d 6676 . . . . . . . 8 (𝑥 = 𝑦 → (∏t‘(𝐹𝑥)) = (∏t‘(𝐹𝑦)))
1817eleq1d 2899 . . . . . . 7 (𝑥 = 𝑦 → ((∏t‘(𝐹𝑥)) ∈ Comp ↔ (∏t‘(𝐹𝑦)) ∈ Comp))
1918imbi2d 343 . . . . . 6 (𝑥 = 𝑦 → (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑥)) ∈ Comp) ↔ ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑦)) ∈ Comp)))
2015, 19imbi12d 347 . . . . 5 (𝑥 = 𝑦 → ((𝑥𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑥)) ∈ Comp)) ↔ (𝑦𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑦)) ∈ Comp))))
21 sseq1 3994 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥𝐴 ↔ (𝑦 ∪ {𝑧}) ⊆ 𝐴))
22 reseq2 5850 . . . . . . . . 9 (𝑥 = (𝑦 ∪ {𝑧}) → (𝐹𝑥) = (𝐹 ↾ (𝑦 ∪ {𝑧})))
2322fveq2d 6676 . . . . . . . 8 (𝑥 = (𝑦 ∪ {𝑧}) → (∏t‘(𝐹𝑥)) = (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))))
2423eleq1d 2899 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → ((∏t‘(𝐹𝑥)) ∈ Comp ↔ (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) ∈ Comp))
2524imbi2d 343 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑥)) ∈ Comp) ↔ ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) ∈ Comp)))
2621, 25imbi12d 347 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝑥𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑥)) ∈ Comp)) ↔ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) ∈ Comp))))
27 sseq1 3994 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝐴𝐴𝐴))
28 reseq2 5850 . . . . . . . . 9 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
2928fveq2d 6676 . . . . . . . 8 (𝑥 = 𝐴 → (∏t‘(𝐹𝑥)) = (∏t‘(𝐹𝐴)))
3029eleq1d 2899 . . . . . . 7 (𝑥 = 𝐴 → ((∏t‘(𝐹𝑥)) ∈ Comp ↔ (∏t‘(𝐹𝐴)) ∈ Comp))
3130imbi2d 343 . . . . . 6 (𝑥 = 𝐴 → (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑥)) ∈ Comp) ↔ ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝐴)) ∈ Comp)))
3227, 31imbi12d 347 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑥)) ∈ Comp)) ↔ (𝐴𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝐴)) ∈ Comp))))
33 0ex 5213 . . . . . . . . 9 ∅ ∈ V
34 f0 6562 . . . . . . . . 9 ∅:∅⟶Top
35 pttop 22192 . . . . . . . . 9 ((∅ ∈ V ∧ ∅:∅⟶Top) → (∏t‘∅) ∈ Top)
3633, 34, 35mp2an 690 . . . . . . . 8 (∏t‘∅) ∈ Top
37 eqid 2823 . . . . . . . . . . . . 13 (∏t‘∅) = (∏t‘∅)
3837ptuni 22204 . . . . . . . . . . . 12 ((∅ ∈ V ∧ ∅:∅⟶Top) → X𝑥 ∈ ∅ (∅‘𝑥) = (∏t‘∅))
3933, 34, 38mp2an 690 . . . . . . . . . . 11 X𝑥 ∈ ∅ (∅‘𝑥) = (∏t‘∅)
40 ixp0x 8492 . . . . . . . . . . . 12 X𝑥 ∈ ∅ (∅‘𝑥) = {∅}
41 snfi 8596 . . . . . . . . . . . 12 {∅} ∈ Fin
4240, 41eqeltri 2911 . . . . . . . . . . 11 X𝑥 ∈ ∅ (∅‘𝑥) ∈ Fin
4339, 42eqeltrri 2912 . . . . . . . . . 10 (∏t‘∅) ∈ Fin
44 pwfi 8821 . . . . . . . . . 10 ( (∏t‘∅) ∈ Fin ↔ 𝒫 (∏t‘∅) ∈ Fin)
4543, 44mpbi 232 . . . . . . . . 9 𝒫 (∏t‘∅) ∈ Fin
46 pwuni 4877 . . . . . . . . 9 (∏t‘∅) ⊆ 𝒫 (∏t‘∅)
47 ssfi 8740 . . . . . . . . 9 ((𝒫 (∏t‘∅) ∈ Fin ∧ (∏t‘∅) ⊆ 𝒫 (∏t‘∅)) → (∏t‘∅) ∈ Fin)
4845, 46, 47mp2an 690 . . . . . . . 8 (∏t‘∅) ∈ Fin
4936, 48elini 4172 . . . . . . 7 (∏t‘∅) ∈ (Top ∩ Fin)
50 fincmp 22003 . . . . . . 7 ((∏t‘∅) ∈ (Top ∩ Fin) → (∏t‘∅) ∈ Comp)
5149, 50ax-mp 5 . . . . . 6 (∏t‘∅) ∈ Comp
52512a1i 12 . . . . 5 (∅ ⊆ 𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘∅) ∈ Comp))
53 ssun1 4150 . . . . . . . . 9 𝑦 ⊆ (𝑦 ∪ {𝑧})
54 id 22 . . . . . . . . 9 ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑦 ∪ {𝑧}) ⊆ 𝐴)
5553, 54sstrid 3980 . . . . . . . 8 ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑦𝐴)
5655imim1i 63 . . . . . . 7 ((𝑦𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑦)) ∈ Comp)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑦)) ∈ Comp)))
57 eqid 2823 . . . . . . . . . . . . . 14 (∏t‘(𝐹𝑦)) = (∏t‘(𝐹𝑦))
58 eqid 2823 . . . . . . . . . . . . . 14 (∏t‘(𝐹 ↾ {𝑧})) = (∏t‘(𝐹 ↾ {𝑧}))
59 eqid 2823 . . . . . . . . . . . . . 14 (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) = (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧})))
60 resabs1 5885 . . . . . . . . . . . . . . . . 17 (𝑦 ⊆ (𝑦 ∪ {𝑧}) → ((𝐹 ↾ (𝑦 ∪ {𝑧})) ↾ 𝑦) = (𝐹𝑦))
6153, 60ax-mp 5 . . . . . . . . . . . . . . . 16 ((𝐹 ↾ (𝑦 ∪ {𝑧})) ↾ 𝑦) = (𝐹𝑦)
6261eqcomi 2832 . . . . . . . . . . . . . . 15 (𝐹𝑦) = ((𝐹 ↾ (𝑦 ∪ {𝑧})) ↾ 𝑦)
6362fveq2i 6675 . . . . . . . . . . . . . 14 (∏t‘(𝐹𝑦)) = (∏t‘((𝐹 ↾ (𝑦 ∪ {𝑧})) ↾ 𝑦))
64 ssun2 4151 . . . . . . . . . . . . . . . . 17 {𝑧} ⊆ (𝑦 ∪ {𝑧})
65 resabs1 5885 . . . . . . . . . . . . . . . . 17 ({𝑧} ⊆ (𝑦 ∪ {𝑧}) → ((𝐹 ↾ (𝑦 ∪ {𝑧})) ↾ {𝑧}) = (𝐹 ↾ {𝑧}))
6664, 65ax-mp 5 . . . . . . . . . . . . . . . 16 ((𝐹 ↾ (𝑦 ∪ {𝑧})) ↾ {𝑧}) = (𝐹 ↾ {𝑧})
6766eqcomi 2832 . . . . . . . . . . . . . . 15 (𝐹 ↾ {𝑧}) = ((𝐹 ↾ (𝑦 ∪ {𝑧})) ↾ {𝑧})
6867fveq2i 6675 . . . . . . . . . . . . . 14 (∏t‘(𝐹 ↾ {𝑧})) = (∏t‘((𝐹 ↾ (𝑦 ∪ {𝑧})) ↾ {𝑧}))
69 eqid 2823 . . . . . . . . . . . . . 14 (𝑢 (∏t‘(𝐹𝑦)), 𝑣 (∏t‘(𝐹 ↾ {𝑧})) ↦ (𝑢𝑣)) = (𝑢 (∏t‘(𝐹𝑦)), 𝑣 (∏t‘(𝐹 ↾ {𝑧})) ↦ (𝑢𝑣))
70 vex 3499 . . . . . . . . . . . . . . . 16 𝑦 ∈ V
71 snex 5334 . . . . . . . . . . . . . . . 16 {𝑧} ∈ V
7270, 71unex 7471 . . . . . . . . . . . . . . 15 (𝑦 ∪ {𝑧}) ∈ V
7372a1i 11 . . . . . . . . . . . . . 14 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝑦 ∪ {𝑧}) ∈ V)
74 simplr 767 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → 𝐹:𝐴⟶Comp)
75 cmptop 22005 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ Comp → 𝑥 ∈ Top)
7675ssriv 3973 . . . . . . . . . . . . . . . 16 Comp ⊆ Top
77 fss 6529 . . . . . . . . . . . . . . . 16 ((𝐹:𝐴⟶Comp ∧ Comp ⊆ Top) → 𝐹:𝐴⟶Top)
7874, 76, 77sylancl 588 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → 𝐹:𝐴⟶Top)
79 simprr 771 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝑦 ∪ {𝑧}) ⊆ 𝐴)
8078, 79fssresd 6547 . . . . . . . . . . . . . 14 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝐹 ↾ (𝑦 ∪ {𝑧})):(𝑦 ∪ {𝑧})⟶Top)
81 eqidd 2824 . . . . . . . . . . . . . 14 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝑦 ∪ {𝑧}) = (𝑦 ∪ {𝑧}))
82 simprl 769 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → ¬ 𝑧𝑦)
83 disjsn 4649 . . . . . . . . . . . . . . 15 ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑦)
8482, 83sylibr 236 . . . . . . . . . . . . . 14 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝑦 ∩ {𝑧}) = ∅)
8557, 58, 59, 63, 68, 69, 73, 80, 81, 84ptunhmeo 22418 . . . . . . . . . . . . 13 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝑢 (∏t‘(𝐹𝑦)), 𝑣 (∏t‘(𝐹 ↾ {𝑧})) ↦ (𝑢𝑣)) ∈ (((∏t‘(𝐹𝑦)) ×t (∏t‘(𝐹 ↾ {𝑧})))Homeo(∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧})))))
86 hmphi 22387 . . . . . . . . . . . . 13 ((𝑢 (∏t‘(𝐹𝑦)), 𝑣 (∏t‘(𝐹 ↾ {𝑧})) ↦ (𝑢𝑣)) ∈ (((∏t‘(𝐹𝑦)) ×t (∏t‘(𝐹 ↾ {𝑧})))Homeo(∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧})))) → ((∏t‘(𝐹𝑦)) ×t (∏t‘(𝐹 ↾ {𝑧}))) ≃ (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))))
8785, 86syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → ((∏t‘(𝐹𝑦)) ×t (∏t‘(𝐹 ↾ {𝑧}))) ≃ (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))))
881ad2antlr 725 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → 𝐹 Fn 𝐴)
8964, 79sstrid 3980 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → {𝑧} ⊆ 𝐴)
90 vex 3499 . . . . . . . . . . . . . . . . . 18 𝑧 ∈ V
9190snss 4720 . . . . . . . . . . . . . . . . 17 (𝑧𝐴 ↔ {𝑧} ⊆ 𝐴)
9289, 91sylibr 236 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → 𝑧𝐴)
93 fnressn 6922 . . . . . . . . . . . . . . . 16 ((𝐹 Fn 𝐴𝑧𝐴) → (𝐹 ↾ {𝑧}) = {⟨𝑧, (𝐹𝑧)⟩})
9488, 92, 93syl2anc 586 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝐹 ↾ {𝑧}) = {⟨𝑧, (𝐹𝑧)⟩})
9594fveq2d 6676 . . . . . . . . . . . . . 14 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (∏t‘(𝐹 ↾ {𝑧})) = (∏t‘{⟨𝑧, (𝐹𝑧)⟩}))
96 eqid 2823 . . . . . . . . . . . . . . . . 17 (∏t‘{⟨𝑧, (𝐹𝑧)⟩}) = (∏t‘{⟨𝑧, (𝐹𝑧)⟩})
9790a1i 11 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → 𝑧 ∈ V)
9874, 92ffvelrnd 6854 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝐹𝑧) ∈ Comp)
9976, 98sseldi 3967 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝐹𝑧) ∈ Top)
100 toptopon2 21528 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑧) ∈ Top ↔ (𝐹𝑧) ∈ (TopOn‘ (𝐹𝑧)))
10199, 100sylib 220 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝐹𝑧) ∈ (TopOn‘ (𝐹𝑧)))
10296, 97, 101pt1hmeo 22416 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝑥 (𝐹𝑧) ↦ {⟨𝑧, 𝑥⟩}) ∈ ((𝐹𝑧)Homeo(∏t‘{⟨𝑧, (𝐹𝑧)⟩})))
103 hmphi 22387 . . . . . . . . . . . . . . . 16 ((𝑥 (𝐹𝑧) ↦ {⟨𝑧, 𝑥⟩}) ∈ ((𝐹𝑧)Homeo(∏t‘{⟨𝑧, (𝐹𝑧)⟩})) → (𝐹𝑧) ≃ (∏t‘{⟨𝑧, (𝐹𝑧)⟩}))
104102, 103syl 17 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝐹𝑧) ≃ (∏t‘{⟨𝑧, (𝐹𝑧)⟩}))
105 cmphmph 22398 . . . . . . . . . . . . . . 15 ((𝐹𝑧) ≃ (∏t‘{⟨𝑧, (𝐹𝑧)⟩}) → ((𝐹𝑧) ∈ Comp → (∏t‘{⟨𝑧, (𝐹𝑧)⟩}) ∈ Comp))
106104, 98, 105sylc 65 . . . . . . . . . . . . . 14 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (∏t‘{⟨𝑧, (𝐹𝑧)⟩}) ∈ Comp)
10795, 106eqeltrd 2915 . . . . . . . . . . . . 13 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (∏t‘(𝐹 ↾ {𝑧})) ∈ Comp)
108 txcmp 22253 . . . . . . . . . . . . . 14 (((∏t‘(𝐹𝑦)) ∈ Comp ∧ (∏t‘(𝐹 ↾ {𝑧})) ∈ Comp) → ((∏t‘(𝐹𝑦)) ×t (∏t‘(𝐹 ↾ {𝑧}))) ∈ Comp)
109108expcom 416 . . . . . . . . . . . . 13 ((∏t‘(𝐹 ↾ {𝑧})) ∈ Comp → ((∏t‘(𝐹𝑦)) ∈ Comp → ((∏t‘(𝐹𝑦)) ×t (∏t‘(𝐹 ↾ {𝑧}))) ∈ Comp))
110107, 109syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → ((∏t‘(𝐹𝑦)) ∈ Comp → ((∏t‘(𝐹𝑦)) ×t (∏t‘(𝐹 ↾ {𝑧}))) ∈ Comp))
111 cmphmph 22398 . . . . . . . . . . . 12 (((∏t‘(𝐹𝑦)) ×t (∏t‘(𝐹 ↾ {𝑧}))) ≃ (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) → (((∏t‘(𝐹𝑦)) ×t (∏t‘(𝐹 ↾ {𝑧}))) ∈ Comp → (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) ∈ Comp))
11287, 110, 111sylsyld 61 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → ((∏t‘(𝐹𝑦)) ∈ Comp → (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) ∈ Comp))
113112expcom 416 . . . . . . . . . 10 ((¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → ((∏t‘(𝐹𝑦)) ∈ Comp → (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) ∈ Comp)))
114113a2d 29 . . . . . . . . 9 ((¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑦)) ∈ Comp) → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) ∈ Comp)))
115114ex 415 . . . . . . . 8 𝑧𝑦 → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑦)) ∈ Comp) → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) ∈ Comp))))
116115a2d 29 . . . . . . 7 𝑧𝑦 → (((𝑦 ∪ {𝑧}) ⊆ 𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑦)) ∈ Comp)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) ∈ Comp))))
11756, 116syl5 34 . . . . . 6 𝑧𝑦 → ((𝑦𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑦)) ∈ Comp)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) ∈ Comp))))
118117adantl 484 . . . . 5 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((𝑦𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑦)) ∈ Comp)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) ∈ Comp))))
11914, 20, 26, 32, 52, 118findcard2s 8761 . . . 4 (𝐴 ∈ Fin → (𝐴𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝐴)) ∈ Comp)))
1206, 119mpi 20 . . 3 (𝐴 ∈ Fin → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝐴)) ∈ Comp))
121120anabsi5 667 . 2 ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝐴)) ∈ Comp)
1225, 121eqeltrrd 2916 1 ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t𝐹) ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  Vcvv 3496  cun 3936  cin 3937  wss 3938  c0 4293  𝒫 cpw 4541  {csn 4569  cop 4575   cuni 4840   class class class wbr 5068  cmpt 5148  cres 5559   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  cmpo 7160  Xcixp 8463  Fincfn 8511  tcpt 16714  Topctop 21503  TopOnctopon 21520  Compccmp 21996   ×t ctx 22170  Homeochmeo 22363  chmph 22364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fi 8877  df-topgen 16719  df-pt 16720  df-top 21504  df-topon 21521  df-bases 21556  df-cn 21837  df-cnp 21838  df-cmp 21997  df-tx 22172  df-hmeo 22365  df-hmph 22366
This theorem is referenced by:  poimirlem30  34924
  Copyright terms: Public domain W3C validator