MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcmplem2 Structured version   Visualization version   GIF version

Theorem ptcmplem2 21780
Description: Lemma for ptcmp 21785. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
ptcmp.1 𝑆 = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
ptcmp.2 𝑋 = X𝑛𝐴 (𝐹𝑛)
ptcmp.3 (𝜑𝐴𝑉)
ptcmp.4 (𝜑𝐹:𝐴⟶Comp)
ptcmp.5 (𝜑𝑋 ∈ (UFL ∩ dom card))
ptcmplem2.5 (𝜑𝑈 ⊆ ran 𝑆)
ptcmplem2.6 (𝜑𝑋 = 𝑈)
ptcmplem2.7 (𝜑 → ¬ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧)
Assertion
Ref Expression
ptcmplem2 (𝜑 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) ∈ dom card)
Distinct variable groups:   𝑘,𝑛,𝑢,𝑤,𝑧,𝐴   𝑆,𝑘,𝑛,𝑢,𝑧   𝜑,𝑘,𝑛,𝑢   𝑈,𝑘,𝑢,𝑧   𝑘,𝑉,𝑛,𝑢,𝑤,𝑧   𝑘,𝐹,𝑛,𝑢,𝑤,𝑧   𝑘,𝑋,𝑛,𝑢,𝑤,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤)   𝑆(𝑤)   𝑈(𝑤,𝑛)

Proof of Theorem ptcmplem2
Dummy variables 𝑓 𝑔 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptcmplem2.7 . . . 4 (𝜑 → ¬ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧)
2 0ss 3949 . . . . . . 7 ∅ ⊆ 𝑈
3 0fin 8140 . . . . . . 7 ∅ ∈ Fin
4 elfpw 8220 . . . . . . 7 (∅ ∈ (𝒫 𝑈 ∩ Fin) ↔ (∅ ⊆ 𝑈 ∧ ∅ ∈ Fin))
52, 3, 4mpbir2an 954 . . . . . 6 ∅ ∈ (𝒫 𝑈 ∩ Fin)
6 unieq 4415 . . . . . . . . 9 (𝑧 = ∅ → 𝑧 = ∅)
7 uni0 4436 . . . . . . . . 9 ∅ = ∅
86, 7syl6eq 2671 . . . . . . . 8 (𝑧 = ∅ → 𝑧 = ∅)
98eqeq2d 2631 . . . . . . 7 (𝑧 = ∅ → (𝑋 = 𝑧𝑋 = ∅))
109rspcev 3298 . . . . . 6 ((∅ ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑋 = ∅) → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧)
115, 10mpan 705 . . . . 5 (𝑋 = ∅ → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧)
1211necon3bi 2816 . . . 4 (¬ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧𝑋 ≠ ∅)
131, 12syl 17 . . 3 (𝜑𝑋 ≠ ∅)
14 n0 3912 . . 3 (𝑋 ≠ ∅ ↔ ∃𝑓 𝑓𝑋)
1513, 14sylib 208 . 2 (𝜑 → ∃𝑓 𝑓𝑋)
16 ptcmp.2 . . . . . . 7 𝑋 = X𝑛𝐴 (𝐹𝑛)
17 fveq2 6153 . . . . . . . . 9 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
1817unieqd 4417 . . . . . . . 8 (𝑛 = 𝑘 (𝐹𝑛) = (𝐹𝑘))
1918cbvixpv 7878 . . . . . . 7 X𝑛𝐴 (𝐹𝑛) = X𝑘𝐴 (𝐹𝑘)
2016, 19eqtri 2643 . . . . . 6 𝑋 = X𝑘𝐴 (𝐹𝑘)
21 inss2 3817 . . . . . . . 8 (UFL ∩ dom card) ⊆ dom card
22 ptcmp.5 . . . . . . . 8 (𝜑𝑋 ∈ (UFL ∩ dom card))
2321, 22sseldi 3585 . . . . . . 7 (𝜑𝑋 ∈ dom card)
2423adantr 481 . . . . . 6 ((𝜑𝑓𝑋) → 𝑋 ∈ dom card)
2520, 24syl5eqelr 2703 . . . . 5 ((𝜑𝑓𝑋) → X𝑘𝐴 (𝐹𝑘) ∈ dom card)
26 ssrab2 3671 . . . . . 6 {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} ⊆ 𝐴
2713adantr 481 . . . . . . 7 ((𝜑𝑓𝑋) → 𝑋 ≠ ∅)
2820, 27syl5eqner 2865 . . . . . 6 ((𝜑𝑓𝑋) → X𝑘𝐴 (𝐹𝑘) ≠ ∅)
29 eqid 2621 . . . . . . 7 (𝑔X𝑘𝐴 (𝐹𝑘) ↦ (𝑔 ↾ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜})) = (𝑔X𝑘𝐴 (𝐹𝑘) ↦ (𝑔 ↾ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜}))
3029resixpfo 7898 . . . . . 6 (({𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} ⊆ 𝐴X𝑘𝐴 (𝐹𝑘) ≠ ∅) → (𝑔X𝑘𝐴 (𝐹𝑘) ↦ (𝑔 ↾ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜})):X𝑘𝐴 (𝐹𝑘)–ontoX𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘))
3126, 28, 30sylancr 694 . . . . 5 ((𝜑𝑓𝑋) → (𝑔X𝑘𝐴 (𝐹𝑘) ↦ (𝑔 ↾ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜})):X𝑘𝐴 (𝐹𝑘)–ontoX𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘))
32 fonum 8833 . . . . 5 ((X𝑘𝐴 (𝐹𝑘) ∈ dom card ∧ (𝑔X𝑘𝐴 (𝐹𝑘) ↦ (𝑔 ↾ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜})):X𝑘𝐴 (𝐹𝑘)–ontoX𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘)) → X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) ∈ dom card)
3325, 31, 32syl2anc 692 . . . 4 ((𝜑𝑓𝑋) → X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) ∈ dom card)
34 vex 3192 . . . . . . . . . . 11 𝑔 ∈ V
35 difexg 4773 . . . . . . . . . . 11 (𝑔 ∈ V → (𝑔𝑓) ∈ V)
3634, 35mp1i 13 . . . . . . . . . 10 ((𝜑𝑓𝑋) → (𝑔𝑓) ∈ V)
37 dmexg 7051 . . . . . . . . . 10 ((𝑔𝑓) ∈ V → dom (𝑔𝑓) ∈ V)
38 uniexg 6915 . . . . . . . . . 10 (dom (𝑔𝑓) ∈ V → dom (𝑔𝑓) ∈ V)
3936, 37, 383syl 18 . . . . . . . . 9 ((𝜑𝑓𝑋) → dom (𝑔𝑓) ∈ V)
4039ralrimivw 2962 . . . . . . . 8 ((𝜑𝑓𝑋) → ∀𝑔𝑋 dom (𝑔𝑓) ∈ V)
41 eqid 2621 . . . . . . . . 9 (𝑔𝑋 dom (𝑔𝑓)) = (𝑔𝑋 dom (𝑔𝑓))
4241fnmpt 5982 . . . . . . . 8 (∀𝑔𝑋 dom (𝑔𝑓) ∈ V → (𝑔𝑋 dom (𝑔𝑓)) Fn 𝑋)
4340, 42syl 17 . . . . . . 7 ((𝜑𝑓𝑋) → (𝑔𝑋 dom (𝑔𝑓)) Fn 𝑋)
44 dffn4 6083 . . . . . . 7 ((𝑔𝑋 dom (𝑔𝑓)) Fn 𝑋 ↔ (𝑔𝑋 dom (𝑔𝑓)):𝑋onto→ran (𝑔𝑋 dom (𝑔𝑓)))
4543, 44sylib 208 . . . . . 6 ((𝜑𝑓𝑋) → (𝑔𝑋 dom (𝑔𝑓)):𝑋onto→ran (𝑔𝑋 dom (𝑔𝑓)))
46 fonum 8833 . . . . . 6 ((𝑋 ∈ dom card ∧ (𝑔𝑋 dom (𝑔𝑓)):𝑋onto→ran (𝑔𝑋 dom (𝑔𝑓))) → ran (𝑔𝑋 dom (𝑔𝑓)) ∈ dom card)
4724, 45, 46syl2anc 692 . . . . 5 ((𝜑𝑓𝑋) → ran (𝑔𝑋 dom (𝑔𝑓)) ∈ dom card)
48 ssdif0 3921 . . . . . . . . . . . 12 ( (𝐹𝑘) ⊆ {(𝑓𝑘)} ↔ ( (𝐹𝑘) ∖ {(𝑓𝑘)}) = ∅)
49 simpr 477 . . . . . . . . . . . . . . 15 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ (𝐹𝑘) ⊆ {(𝑓𝑘)}) → (𝐹𝑘) ⊆ {(𝑓𝑘)})
50 simpr 477 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑓𝑋) → 𝑓𝑋)
5150, 20syl6eleq 2708 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑓𝑋) → 𝑓X𝑘𝐴 (𝐹𝑘))
52 vex 3192 . . . . . . . . . . . . . . . . . . . . 21 𝑓 ∈ V
5352elixp 7867 . . . . . . . . . . . . . . . . . . . 20 (𝑓X𝑘𝐴 (𝐹𝑘) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ (𝐹𝑘)))
5453simprbi 480 . . . . . . . . . . . . . . . . . . 19 (𝑓X𝑘𝐴 (𝐹𝑘) → ∀𝑘𝐴 (𝑓𝑘) ∈ (𝐹𝑘))
5551, 54syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓𝑋) → ∀𝑘𝐴 (𝑓𝑘) ∈ (𝐹𝑘))
5655r19.21bi 2927 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓𝑋) ∧ 𝑘𝐴) → (𝑓𝑘) ∈ (𝐹𝑘))
5756snssd 4314 . . . . . . . . . . . . . . . 16 (((𝜑𝑓𝑋) ∧ 𝑘𝐴) → {(𝑓𝑘)} ⊆ (𝐹𝑘))
5857adantr 481 . . . . . . . . . . . . . . 15 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ (𝐹𝑘) ⊆ {(𝑓𝑘)}) → {(𝑓𝑘)} ⊆ (𝐹𝑘))
5949, 58eqssd 3604 . . . . . . . . . . . . . 14 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ (𝐹𝑘) ⊆ {(𝑓𝑘)}) → (𝐹𝑘) = {(𝑓𝑘)})
60 fvex 6163 . . . . . . . . . . . . . . 15 (𝑓𝑘) ∈ V
6160ensn1 7972 . . . . . . . . . . . . . 14 {(𝑓𝑘)} ≈ 1𝑜
6259, 61syl6eqbr 4657 . . . . . . . . . . . . 13 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ (𝐹𝑘) ⊆ {(𝑓𝑘)}) → (𝐹𝑘) ≈ 1𝑜)
6362ex 450 . . . . . . . . . . . 12 (((𝜑𝑓𝑋) ∧ 𝑘𝐴) → ( (𝐹𝑘) ⊆ {(𝑓𝑘)} → (𝐹𝑘) ≈ 1𝑜))
6448, 63syl5bir 233 . . . . . . . . . . 11 (((𝜑𝑓𝑋) ∧ 𝑘𝐴) → (( (𝐹𝑘) ∖ {(𝑓𝑘)}) = ∅ → (𝐹𝑘) ≈ 1𝑜))
6564con3d 148 . . . . . . . . . 10 (((𝜑𝑓𝑋) ∧ 𝑘𝐴) → (¬ (𝐹𝑘) ≈ 1𝑜 → ¬ ( (𝐹𝑘) ∖ {(𝑓𝑘)}) = ∅))
66 neq0 3911 . . . . . . . . . 10 (¬ ( (𝐹𝑘) ∖ {(𝑓𝑘)}) = ∅ ↔ ∃𝑥 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)}))
6765, 66syl6ib 241 . . . . . . . . 9 (((𝜑𝑓𝑋) ∧ 𝑘𝐴) → (¬ (𝐹𝑘) ≈ 1𝑜 → ∃𝑥 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})))
68 eldifi 3715 . . . . . . . . . . . . 13 (𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)}) → 𝑥 (𝐹𝑘))
69 simplr 791 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 (𝐹𝑘)) ∧ 𝑛𝐴) → 𝑥 (𝐹𝑘))
70 iftrue 4069 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑘 → if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) = 𝑥)
7170, 18eleq12d 2692 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑘 → (if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) ∈ (𝐹𝑛) ↔ 𝑥 (𝐹𝑘)))
7269, 71syl5ibrcom 237 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 (𝐹𝑘)) ∧ 𝑛𝐴) → (𝑛 = 𝑘 → if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) ∈ (𝐹𝑛)))
7350, 16syl6eleq 2708 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑓𝑋) → 𝑓X𝑛𝐴 (𝐹𝑛))
7452elixp 7867 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓X𝑛𝐴 (𝐹𝑛) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑛𝐴 (𝑓𝑛) ∈ (𝐹𝑛)))
7574simprbi 480 . . . . . . . . . . . . . . . . . . . . 21 (𝑓X𝑛𝐴 (𝐹𝑛) → ∀𝑛𝐴 (𝑓𝑛) ∈ (𝐹𝑛))
7673, 75syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑓𝑋) → ∀𝑛𝐴 (𝑓𝑛) ∈ (𝐹𝑛))
7776ad2antrr 761 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 (𝐹𝑘)) → ∀𝑛𝐴 (𝑓𝑛) ∈ (𝐹𝑛))
7877r19.21bi 2927 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 (𝐹𝑘)) ∧ 𝑛𝐴) → (𝑓𝑛) ∈ (𝐹𝑛))
79 iffalse 4072 . . . . . . . . . . . . . . . . . . 19 𝑛 = 𝑘 → if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) = (𝑓𝑛))
8079eleq1d 2683 . . . . . . . . . . . . . . . . . 18 𝑛 = 𝑘 → (if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) ∈ (𝐹𝑛) ↔ (𝑓𝑛) ∈ (𝐹𝑛)))
8178, 80syl5ibrcom 237 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 (𝐹𝑘)) ∧ 𝑛𝐴) → (¬ 𝑛 = 𝑘 → if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) ∈ (𝐹𝑛)))
8272, 81pm2.61d 170 . . . . . . . . . . . . . . . 16 (((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 (𝐹𝑘)) ∧ 𝑛𝐴) → if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) ∈ (𝐹𝑛))
8382ralrimiva 2961 . . . . . . . . . . . . . . 15 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 (𝐹𝑘)) → ∀𝑛𝐴 if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) ∈ (𝐹𝑛))
84 ptcmp.3 . . . . . . . . . . . . . . . . 17 (𝜑𝐴𝑉)
8584ad3antrrr 765 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 (𝐹𝑘)) → 𝐴𝑉)
86 mptelixpg 7897 . . . . . . . . . . . . . . . 16 (𝐴𝑉 → ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∈ X𝑛𝐴 (𝐹𝑛) ↔ ∀𝑛𝐴 if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) ∈ (𝐹𝑛)))
8785, 86syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 (𝐹𝑘)) → ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∈ X𝑛𝐴 (𝐹𝑛) ↔ ∀𝑛𝐴 if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) ∈ (𝐹𝑛)))
8883, 87mpbird 247 . . . . . . . . . . . . . 14 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 (𝐹𝑘)) → (𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∈ X𝑛𝐴 (𝐹𝑛))
8988, 16syl6eleqr 2709 . . . . . . . . . . . . 13 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 (𝐹𝑘)) → (𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∈ 𝑋)
9068, 89sylan2 491 . . . . . . . . . . . 12 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → (𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∈ 𝑋)
91 vex 3192 . . . . . . . . . . . . . 14 𝑘 ∈ V
9291unisn 4422 . . . . . . . . . . . . 13 {𝑘} = 𝑘
93 simplr 791 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → 𝑘𝐴)
94 eleq1 2686 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑘 → (𝑚𝐴𝑘𝐴))
9593, 94syl5ibrcom 237 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → (𝑚 = 𝑘𝑚𝐴))
9695pm4.71rd 666 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → (𝑚 = 𝑘 ↔ (𝑚𝐴𝑚 = 𝑘)))
97 equequ1 1949 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑚 → (𝑛 = 𝑘𝑚 = 𝑘))
98 fveq2 6153 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑚 → (𝑓𝑛) = (𝑓𝑚))
9997, 98ifbieq2d 4088 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑚 → if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) = if(𝑚 = 𝑘, 𝑥, (𝑓𝑚)))
100 eqid 2621 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) = (𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))
101 vex 3192 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑥 ∈ V
102 fvex 6163 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓𝑚) ∈ V
103101, 102ifex 4133 . . . . . . . . . . . . . . . . . . . . . . 23 if(𝑚 = 𝑘, 𝑥, (𝑓𝑚)) ∈ V
10499, 100, 103fvmpt 6244 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚𝐴 → ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) = if(𝑚 = 𝑘, 𝑥, (𝑓𝑚)))
105104neeq1d 2849 . . . . . . . . . . . . . . . . . . . . 21 (𝑚𝐴 → (((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) ≠ (𝑓𝑚) ↔ if(𝑚 = 𝑘, 𝑥, (𝑓𝑚)) ≠ (𝑓𝑚)))
106105adantl 482 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) ∧ 𝑚𝐴) → (((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) ≠ (𝑓𝑚) ↔ if(𝑚 = 𝑘, 𝑥, (𝑓𝑚)) ≠ (𝑓𝑚)))
107 iffalse 4072 . . . . . . . . . . . . . . . . . . . . . 22 𝑚 = 𝑘 → if(𝑚 = 𝑘, 𝑥, (𝑓𝑚)) = (𝑓𝑚))
108107necon1ai 2817 . . . . . . . . . . . . . . . . . . . . 21 (if(𝑚 = 𝑘, 𝑥, (𝑓𝑚)) ≠ (𝑓𝑚) → 𝑚 = 𝑘)
109 eldifsni 4294 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)}) → 𝑥 ≠ (𝑓𝑘))
110109ad2antlr 762 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) ∧ 𝑚𝐴) → 𝑥 ≠ (𝑓𝑘))
111 iftrue 4069 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = 𝑘 → if(𝑚 = 𝑘, 𝑥, (𝑓𝑚)) = 𝑥)
112 fveq2 6153 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = 𝑘 → (𝑓𝑚) = (𝑓𝑘))
113111, 112neeq12d 2851 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑘 → (if(𝑚 = 𝑘, 𝑥, (𝑓𝑚)) ≠ (𝑓𝑚) ↔ 𝑥 ≠ (𝑓𝑘)))
114110, 113syl5ibrcom 237 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) ∧ 𝑚𝐴) → (𝑚 = 𝑘 → if(𝑚 = 𝑘, 𝑥, (𝑓𝑚)) ≠ (𝑓𝑚)))
115108, 114impbid2 216 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) ∧ 𝑚𝐴) → (if(𝑚 = 𝑘, 𝑥, (𝑓𝑚)) ≠ (𝑓𝑚) ↔ 𝑚 = 𝑘))
116106, 115bitrd 268 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) ∧ 𝑚𝐴) → (((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) ≠ (𝑓𝑚) ↔ 𝑚 = 𝑘))
117116pm5.32da 672 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → ((𝑚𝐴 ∧ ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) ≠ (𝑓𝑚)) ↔ (𝑚𝐴𝑚 = 𝑘)))
11896, 117bitr4d 271 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → (𝑚 = 𝑘 ↔ (𝑚𝐴 ∧ ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) ≠ (𝑓𝑚))))
119118abbidv 2738 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → {𝑚𝑚 = 𝑘} = {𝑚 ∣ (𝑚𝐴 ∧ ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) ≠ (𝑓𝑚))})
120 df-sn 4154 . . . . . . . . . . . . . . . 16 {𝑘} = {𝑚𝑚 = 𝑘}
121 df-rab 2916 . . . . . . . . . . . . . . . 16 {𝑚𝐴 ∣ ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) ≠ (𝑓𝑚)} = {𝑚 ∣ (𝑚𝐴 ∧ ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) ≠ (𝑓𝑚))}
122119, 120, 1213eqtr4g 2680 . . . . . . . . . . . . . . 15 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → {𝑘} = {𝑚𝐴 ∣ ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) ≠ (𝑓𝑚)})
123 fvex 6163 . . . . . . . . . . . . . . . . . . 19 (𝑓𝑛) ∈ V
124101, 123ifex 4133 . . . . . . . . . . . . . . . . . 18 if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) ∈ V
125124rgenw 2919 . . . . . . . . . . . . . . . . 17 𝑛𝐴 if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) ∈ V
126100fnmpt 5982 . . . . . . . . . . . . . . . . 17 (∀𝑛𝐴 if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)) ∈ V → (𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) Fn 𝐴)
127125, 126mp1i 13 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → (𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) Fn 𝐴)
128 ixpfn 7866 . . . . . . . . . . . . . . . . . 18 (𝑓X𝑛𝐴 (𝐹𝑛) → 𝑓 Fn 𝐴)
12973, 128syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓𝑋) → 𝑓 Fn 𝐴)
130129ad2antrr 761 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → 𝑓 Fn 𝐴)
131 fndmdif 6282 . . . . . . . . . . . . . . . 16 (((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) Fn 𝐴𝑓 Fn 𝐴) → dom ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∖ 𝑓) = {𝑚𝐴 ∣ ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) ≠ (𝑓𝑚)})
132127, 130, 131syl2anc 692 . . . . . . . . . . . . . . 15 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → dom ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∖ 𝑓) = {𝑚𝐴 ∣ ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛)))‘𝑚) ≠ (𝑓𝑚)})
133122, 132eqtr4d 2658 . . . . . . . . . . . . . 14 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → {𝑘} = dom ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∖ 𝑓))
134133unieqd 4417 . . . . . . . . . . . . 13 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → {𝑘} = dom ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∖ 𝑓))
13592, 134syl5eqr 2669 . . . . . . . . . . . 12 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → 𝑘 = dom ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∖ 𝑓))
136 difeq1 3704 . . . . . . . . . . . . . . . 16 (𝑔 = (𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) → (𝑔𝑓) = ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∖ 𝑓))
137136dmeqd 5291 . . . . . . . . . . . . . . 15 (𝑔 = (𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) → dom (𝑔𝑓) = dom ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∖ 𝑓))
138137unieqd 4417 . . . . . . . . . . . . . 14 (𝑔 = (𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) → dom (𝑔𝑓) = dom ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∖ 𝑓))
139138eqeq2d 2631 . . . . . . . . . . . . 13 (𝑔 = (𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) → (𝑘 = dom (𝑔𝑓) ↔ 𝑘 = dom ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∖ 𝑓)))
140139rspcev 3298 . . . . . . . . . . . 12 (((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∈ 𝑋𝑘 = dom ((𝑛𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓𝑛))) ∖ 𝑓)) → ∃𝑔𝑋 𝑘 = dom (𝑔𝑓))
14190, 135, 140syl2anc 692 . . . . . . . . . . 11 ((((𝜑𝑓𝑋) ∧ 𝑘𝐴) ∧ 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)})) → ∃𝑔𝑋 𝑘 = dom (𝑔𝑓))
142141ex 450 . . . . . . . . . 10 (((𝜑𝑓𝑋) ∧ 𝑘𝐴) → (𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)}) → ∃𝑔𝑋 𝑘 = dom (𝑔𝑓)))
143142exlimdv 1858 . . . . . . . . 9 (((𝜑𝑓𝑋) ∧ 𝑘𝐴) → (∃𝑥 𝑥 ∈ ( (𝐹𝑘) ∖ {(𝑓𝑘)}) → ∃𝑔𝑋 𝑘 = dom (𝑔𝑓)))
14467, 143syld 47 . . . . . . . 8 (((𝜑𝑓𝑋) ∧ 𝑘𝐴) → (¬ (𝐹𝑘) ≈ 1𝑜 → ∃𝑔𝑋 𝑘 = dom (𝑔𝑓)))
145144expimpd 628 . . . . . . 7 ((𝜑𝑓𝑋) → ((𝑘𝐴 ∧ ¬ (𝐹𝑘) ≈ 1𝑜) → ∃𝑔𝑋 𝑘 = dom (𝑔𝑓)))
14618breq1d 4628 . . . . . . . . 9 (𝑛 = 𝑘 → ( (𝐹𝑛) ≈ 1𝑜 (𝐹𝑘) ≈ 1𝑜))
147146notbid 308 . . . . . . . 8 (𝑛 = 𝑘 → (¬ (𝐹𝑛) ≈ 1𝑜 ↔ ¬ (𝐹𝑘) ≈ 1𝑜))
148147elrab 3350 . . . . . . 7 (𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} ↔ (𝑘𝐴 ∧ ¬ (𝐹𝑘) ≈ 1𝑜))
14941elrnmpt 5337 . . . . . . . 8 (𝑘 ∈ V → (𝑘 ∈ ran (𝑔𝑋 dom (𝑔𝑓)) ↔ ∃𝑔𝑋 𝑘 = dom (𝑔𝑓)))
15091, 149ax-mp 5 . . . . . . 7 (𝑘 ∈ ran (𝑔𝑋 dom (𝑔𝑓)) ↔ ∃𝑔𝑋 𝑘 = dom (𝑔𝑓))
151145, 148, 1503imtr4g 285 . . . . . 6 ((𝜑𝑓𝑋) → (𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} → 𝑘 ∈ ran (𝑔𝑋 dom (𝑔𝑓))))
152151ssrdv 3593 . . . . 5 ((𝜑𝑓𝑋) → {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} ⊆ ran (𝑔𝑋 dom (𝑔𝑓)))
153 ssnum 8814 . . . . 5 ((ran (𝑔𝑋 dom (𝑔𝑓)) ∈ dom card ∧ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} ⊆ ran (𝑔𝑋 dom (𝑔𝑓))) → {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} ∈ dom card)
15447, 152, 153syl2anc 692 . . . 4 ((𝜑𝑓𝑋) → {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} ∈ dom card)
155 xpnum 8729 . . . 4 ((X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) ∈ dom card ∧ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} ∈ dom card) → (X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) × {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜}) ∈ dom card)
15633, 154, 155syl2anc 692 . . 3 ((𝜑𝑓𝑋) → (X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) × {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜}) ∈ dom card)
15784adantr 481 . . . . 5 ((𝜑𝑓𝑋) → 𝐴𝑉)
158 rabexg 4777 . . . . 5 (𝐴𝑉 → {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} ∈ V)
159157, 158syl 17 . . . 4 ((𝜑𝑓𝑋) → {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} ∈ V)
160 fvex 6163 . . . . . . 7 (𝐹𝑘) ∈ V
161160uniex 6913 . . . . . 6 (𝐹𝑘) ∈ V
162161rgenw 2919 . . . . 5 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) ∈ V
163 iunexg 7096 . . . . 5 (({𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} ∈ V ∧ ∀𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) ∈ V) → 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) ∈ V)
164159, 162, 163sylancl 693 . . . 4 ((𝜑𝑓𝑋) → 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) ∈ V)
165 resixp 7895 . . . . . 6 (({𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} ⊆ 𝐴𝑓X𝑘𝐴 (𝐹𝑘)) → (𝑓 ↾ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜}) ∈ X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘))
16626, 51, 165sylancr 694 . . . . 5 ((𝜑𝑓𝑋) → (𝑓 ↾ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜}) ∈ X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘))
167 ne0i 3902 . . . . 5 ((𝑓 ↾ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜}) ∈ X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) → X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) ≠ ∅)
168166, 167syl 17 . . . 4 ((𝜑𝑓𝑋) → X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) ≠ ∅)
169 ixpiunwdom 8448 . . . 4 (({𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} ∈ V ∧ 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) ∈ V ∧ X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) ≠ ∅) → 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) ≼* (X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) × {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜}))
170159, 164, 168, 169syl3anc 1323 . . 3 ((𝜑𝑓𝑋) → 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) ≼* (X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) × {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜}))
171 numwdom 8834 . . 3 (((X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) × {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜}) ∈ dom card ∧ 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) ≼* (X𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) × {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜})) → 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) ∈ dom card)
172156, 170, 171syl2anc 692 . 2 ((𝜑𝑓𝑋) → 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) ∈ dom card)
17315, 172exlimddv 1860 1 (𝜑 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wex 1701  wcel 1987  {cab 2607  wne 2790  wral 2907  wrex 2908  {crab 2911  Vcvv 3189  cdif 3556  cin 3558  wss 3559  c0 3896  ifcif 4063  𝒫 cpw 4135  {csn 4153   cuni 4407   ciun 4490   class class class wbr 4618  cmpt 4678   × cxp 5077  ccnv 5078  dom cdm 5079  ran crn 5080  cres 5081  cima 5082   Fn wfn 5847  wf 5848  ontowfo 5850  cfv 5852  cmpt2 6612  1𝑜c1o 7505  Xcixp 7860  cen 7904  Fincfn 7907  * cwdom 8414  cardccrd 8713  Compccmp 21112  UFLcufl 21627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-omul 7517  df-er 7694  df-map 7811  df-ixp 7861  df-en 7908  df-dom 7909  df-fin 7911  df-wdom 8416  df-card 8717  df-acn 8720
This theorem is referenced by:  ptcmplem3  21781
  Copyright terms: Public domain W3C validator