MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcnp Structured version   Visualization version   GIF version

Theorem ptcnp 22224
Description: If every projection of a function is continuous at 𝐷, then the function itself is continuous at 𝐷 into the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
ptcnp.2 𝐾 = (∏t𝐹)
ptcnp.3 (𝜑𝐽 ∈ (TopOn‘𝑋))
ptcnp.4 (𝜑𝐼𝑉)
ptcnp.5 (𝜑𝐹:𝐼⟶Top)
ptcnp.6 (𝜑𝐷𝑋)
ptcnp.7 ((𝜑𝑘𝐼) → (𝑥𝑋𝐴) ∈ ((𝐽 CnP (𝐹𝑘))‘𝐷))
Assertion
Ref Expression
ptcnp (𝜑 → (𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∈ ((𝐽 CnP 𝐾)‘𝐷))
Distinct variable groups:   𝑥,𝑘,𝐷   𝑘,𝐼,𝑥   𝑘,𝐽   𝜑,𝑘,𝑥   𝑘,𝐹,𝑥   𝑘,𝑉,𝑥   𝑘,𝑋,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐽(𝑥)   𝐾(𝑥,𝑘)

Proof of Theorem ptcnp
Dummy variables 𝑓 𝑔 𝑤 𝑧 𝑎 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptcnp.3 . . . . . . . . 9 (𝜑𝐽 ∈ (TopOn‘𝑋))
21adantr 483 . . . . . . . 8 ((𝜑𝑘𝐼) → 𝐽 ∈ (TopOn‘𝑋))
3 ptcnp.5 . . . . . . . . . 10 (𝜑𝐹:𝐼⟶Top)
43ffvelrnda 6845 . . . . . . . . 9 ((𝜑𝑘𝐼) → (𝐹𝑘) ∈ Top)
5 toptopon2 21520 . . . . . . . . 9 ((𝐹𝑘) ∈ Top ↔ (𝐹𝑘) ∈ (TopOn‘ (𝐹𝑘)))
64, 5sylib 220 . . . . . . . 8 ((𝜑𝑘𝐼) → (𝐹𝑘) ∈ (TopOn‘ (𝐹𝑘)))
7 ptcnp.7 . . . . . . . 8 ((𝜑𝑘𝐼) → (𝑥𝑋𝐴) ∈ ((𝐽 CnP (𝐹𝑘))‘𝐷))
8 cnpf2 21852 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐹𝑘) ∈ (TopOn‘ (𝐹𝑘)) ∧ (𝑥𝑋𝐴) ∈ ((𝐽 CnP (𝐹𝑘))‘𝐷)) → (𝑥𝑋𝐴):𝑋 (𝐹𝑘))
92, 6, 7, 8syl3anc 1367 . . . . . . 7 ((𝜑𝑘𝐼) → (𝑥𝑋𝐴):𝑋 (𝐹𝑘))
109fvmptelrn 6871 . . . . . 6 (((𝜑𝑘𝐼) ∧ 𝑥𝑋) → 𝐴 (𝐹𝑘))
1110an32s 650 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑘𝐼) → 𝐴 (𝐹𝑘))
1211ralrimiva 3182 . . . 4 ((𝜑𝑥𝑋) → ∀𝑘𝐼 𝐴 (𝐹𝑘))
13 ptcnp.4 . . . . . 6 (𝜑𝐼𝑉)
1413adantr 483 . . . . 5 ((𝜑𝑥𝑋) → 𝐼𝑉)
15 mptelixpg 8493 . . . . 5 (𝐼𝑉 → ((𝑘𝐼𝐴) ∈ X𝑘𝐼 (𝐹𝑘) ↔ ∀𝑘𝐼 𝐴 (𝐹𝑘)))
1614, 15syl 17 . . . 4 ((𝜑𝑥𝑋) → ((𝑘𝐼𝐴) ∈ X𝑘𝐼 (𝐹𝑘) ↔ ∀𝑘𝐼 𝐴 (𝐹𝑘)))
1712, 16mpbird 259 . . 3 ((𝜑𝑥𝑋) → (𝑘𝐼𝐴) ∈ X𝑘𝐼 (𝐹𝑘))
1817fmpttd 6873 . 2 (𝜑 → (𝑥𝑋 ↦ (𝑘𝐼𝐴)):𝑋X𝑘𝐼 (𝐹𝑘))
19 df-3an 1085 . . . . . . . 8 ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ↔ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)))
20 ptcnp.2 . . . . . . . . . . . . 13 𝐾 = (∏t𝐹)
21 ptcnp.6 . . . . . . . . . . . . 13 (𝜑𝐷𝑋)
22 nfv 1911 . . . . . . . . . . . . . 14 𝑘(𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛))
23 nfv 1911 . . . . . . . . . . . . . . 15 𝑘(𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛))
24 nfcv 2977 . . . . . . . . . . . . . . . . . 18 𝑘𝑋
25 nfmpt1 5156 . . . . . . . . . . . . . . . . . 18 𝑘(𝑘𝐼𝐴)
2624, 25nfmpt 5155 . . . . . . . . . . . . . . . . 17 𝑘(𝑥𝑋 ↦ (𝑘𝐼𝐴))
27 nfcv 2977 . . . . . . . . . . . . . . . . 17 𝑘𝐷
2826, 27nffv 6674 . . . . . . . . . . . . . . . 16 𝑘((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷)
2928nfel1 2994 . . . . . . . . . . . . . . 15 𝑘((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)
3023, 29nfan 1896 . . . . . . . . . . . . . 14 𝑘((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛))
3122, 30nfan 1896 . . . . . . . . . . . . 13 𝑘((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))
32 simprll 777 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) → 𝑔 Fn 𝐼)
33 simprlr 778 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) → ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛))
34 fveq2 6664 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 → (𝑔𝑛) = (𝑔𝑘))
35 fveq2 6664 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
3634, 35eleq12d 2907 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → ((𝑔𝑛) ∈ (𝐹𝑛) ↔ (𝑔𝑘) ∈ (𝐹𝑘)))
3736rspccva 3621 . . . . . . . . . . . . . 14 ((∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ 𝑘𝐼) → (𝑔𝑘) ∈ (𝐹𝑘))
3833, 37sylan 582 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) ∧ 𝑘𝐼) → (𝑔𝑘) ∈ (𝐹𝑘))
39 simprrl 779 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) → (𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)))
4039simpld 497 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) → 𝑤 ∈ Fin)
4139simprd 498 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) → ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛))
4235unieqd 4841 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 (𝐹𝑛) = (𝐹𝑘))
4334, 42eqeq12d 2837 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → ((𝑔𝑛) = (𝐹𝑛) ↔ (𝑔𝑘) = (𝐹𝑘)))
4443rspccva 3621 . . . . . . . . . . . . . 14 ((∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛) ∧ 𝑘 ∈ (𝐼𝑤)) → (𝑔𝑘) = (𝐹𝑘))
4541, 44sylan 582 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) ∧ 𝑘 ∈ (𝐼𝑤)) → (𝑔𝑘) = (𝐹𝑘))
46 simprrr 780 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) → ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛))
4734cbvixpv 8473 . . . . . . . . . . . . . 14 X𝑛𝐼 (𝑔𝑛) = X𝑘𝐼 (𝑔𝑘)
4846, 47eleqtrdi 2923 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) → ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑘𝐼 (𝑔𝑘))
4920, 1, 13, 3, 21, 7, 31, 32, 38, 40, 45, 48ptcnplem 22223 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘)))
5049anassrs 470 . . . . . . . . . . 11 (((𝜑 ∧ (𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛))) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛))) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘)))
5150expr 459 . . . . . . . . . 10 (((𝜑 ∧ (𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛))) ∧ (𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛))) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘))))
5251rexlimdvaa 3285 . . . . . . . . 9 ((𝜑 ∧ (𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛))) → (∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘)))))
5352impr 457 . . . . . . . 8 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛))) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘))))
5419, 53sylan2b 595 . . . . . . 7 ((𝜑 ∧ (𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛))) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘))))
55 eleq2 2901 . . . . . . . 8 (𝑓 = X𝑛𝐼 (𝑔𝑛) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 ↔ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))
5647eqeq2i 2834 . . . . . . . . . . . 12 (𝑓 = X𝑛𝐼 (𝑔𝑛) ↔ 𝑓 = X𝑘𝐼 (𝑔𝑘))
5756biimpi 218 . . . . . . . . . . 11 (𝑓 = X𝑛𝐼 (𝑔𝑛) → 𝑓 = X𝑘𝐼 (𝑔𝑘))
5857sseq2d 3998 . . . . . . . . . 10 (𝑓 = X𝑛𝐼 (𝑔𝑛) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓 ↔ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘)))
5958anbi2d 630 . . . . . . . . 9 (𝑓 = X𝑛𝐼 (𝑔𝑛) → ((𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓) ↔ (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘))))
6059rexbidv 3297 . . . . . . . 8 (𝑓 = X𝑛𝐼 (𝑔𝑛) → (∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓) ↔ ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘))))
6155, 60imbi12d 347 . . . . . . 7 (𝑓 = X𝑛𝐼 (𝑔𝑛) → ((((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓)) ↔ (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘)))))
6254, 61syl5ibrcom 249 . . . . . 6 ((𝜑 ∧ (𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛))) → (𝑓 = X𝑛𝐼 (𝑔𝑛) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓))))
6362expimpd 456 . . . . 5 (𝜑 → (((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑓 = X𝑛𝐼 (𝑔𝑛)) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓))))
6463exlimdv 1930 . . . 4 (𝜑 → (∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑓 = X𝑛𝐼 (𝑔𝑛)) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓))))
6564alrimiv 1924 . . 3 (𝜑 → ∀𝑓(∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑓 = X𝑛𝐼 (𝑔𝑛)) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓))))
66 eqeq1 2825 . . . . . 6 (𝑎 = 𝑓 → (𝑎 = X𝑛𝐼 (𝑔𝑛) ↔ 𝑓 = X𝑛𝐼 (𝑔𝑛)))
6766anbi2d 630 . . . . 5 (𝑎 = 𝑓 → (((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛)) ↔ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑓 = X𝑛𝐼 (𝑔𝑛))))
6867exbidv 1918 . . . 4 (𝑎 = 𝑓 → (∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛)) ↔ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑓 = X𝑛𝐼 (𝑔𝑛))))
6968ralab 3683 . . 3 (∀𝑓 ∈ {𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛))} (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓)) ↔ ∀𝑓(∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑓 = X𝑛𝐼 (𝑔𝑛)) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓))))
7065, 69sylibr 236 . 2 (𝜑 → ∀𝑓 ∈ {𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛))} (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓)))
713ffnd 6509 . . . . 5 (𝜑𝐹 Fn 𝐼)
72 eqid 2821 . . . . . 6 {𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛))} = {𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛))}
7372ptval 22172 . . . . 5 ((𝐼𝑉𝐹 Fn 𝐼) → (∏t𝐹) = (topGen‘{𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛))}))
7413, 71, 73syl2anc 586 . . . 4 (𝜑 → (∏t𝐹) = (topGen‘{𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛))}))
7520, 74syl5eq 2868 . . 3 (𝜑𝐾 = (topGen‘{𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛))}))
763feqmptd 6727 . . . . . 6 (𝜑𝐹 = (𝑘𝐼 ↦ (𝐹𝑘)))
7776fveq2d 6668 . . . . 5 (𝜑 → (∏t𝐹) = (∏t‘(𝑘𝐼 ↦ (𝐹𝑘))))
7820, 77syl5eq 2868 . . . 4 (𝜑𝐾 = (∏t‘(𝑘𝐼 ↦ (𝐹𝑘))))
796ralrimiva 3182 . . . . 5 (𝜑 → ∀𝑘𝐼 (𝐹𝑘) ∈ (TopOn‘ (𝐹𝑘)))
80 eqid 2821 . . . . . 6 (∏t‘(𝑘𝐼 ↦ (𝐹𝑘))) = (∏t‘(𝑘𝐼 ↦ (𝐹𝑘)))
8180pttopon 22198 . . . . 5 ((𝐼𝑉 ∧ ∀𝑘𝐼 (𝐹𝑘) ∈ (TopOn‘ (𝐹𝑘))) → (∏t‘(𝑘𝐼 ↦ (𝐹𝑘))) ∈ (TopOn‘X𝑘𝐼 (𝐹𝑘)))
8213, 79, 81syl2anc 586 . . . 4 (𝜑 → (∏t‘(𝑘𝐼 ↦ (𝐹𝑘))) ∈ (TopOn‘X𝑘𝐼 (𝐹𝑘)))
8378, 82eqeltrd 2913 . . 3 (𝜑𝐾 ∈ (TopOn‘X𝑘𝐼 (𝐹𝑘)))
841, 75, 83, 21tgcnp 21855 . 2 (𝜑 → ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∈ ((𝐽 CnP 𝐾)‘𝐷) ↔ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)):𝑋X𝑘𝐼 (𝐹𝑘) ∧ ∀𝑓 ∈ {𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛))} (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓)))))
8518, 70, 84mpbir2and 711 1 (𝜑 → (𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∈ ((𝐽 CnP 𝐾)‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wal 1531   = wceq 1533  wex 1776  wcel 2110  {cab 2799  wral 3138  wrex 3139  cdif 3932  wss 3935   cuni 4831  cmpt 5138  cima 5552   Fn wfn 6344  wf 6345  cfv 6349  (class class class)co 7150  Xcixp 8455  Fincfn 8503  topGenctg 16705  tcpt 16706  Topctop 21495  TopOnctopon 21512   CnP ccnp 21827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-ixp 8456  df-en 8504  df-dom 8505  df-fin 8507  df-fi 8869  df-topgen 16711  df-pt 16712  df-top 21496  df-topon 21513  df-bases 21548  df-cnp 21830
This theorem is referenced by:  ptcn  22229
  Copyright terms: Public domain W3C validator