MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptfinfin Structured version   Visualization version   GIF version

Theorem ptfinfin 21235
Description: A point covered by a point-finite cover is only covered by finitely many elements. (Contributed by Jeff Hankins, 21-Jan-2010.)
Hypothesis
Ref Expression
ptfinfin.1 𝑋 = 𝐴
Assertion
Ref Expression
ptfinfin ((𝐴 ∈ PtFin ∧ 𝑃𝑋) → {𝑥𝐴𝑃𝑥} ∈ Fin)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑃   𝑥,𝑋

Proof of Theorem ptfinfin
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 ptfinfin.1 . . . . 5 𝑋 = 𝐴
21isptfin 21232 . . . 4 (𝐴 ∈ PtFin → (𝐴 ∈ PtFin ↔ ∀𝑝𝑋 {𝑥𝐴𝑝𝑥} ∈ Fin))
32ibi 256 . . 3 (𝐴 ∈ PtFin → ∀𝑝𝑋 {𝑥𝐴𝑝𝑥} ∈ Fin)
4 eleq1 2686 . . . . . 6 (𝑝 = 𝑃 → (𝑝𝑥𝑃𝑥))
54rabbidv 3177 . . . . 5 (𝑝 = 𝑃 → {𝑥𝐴𝑝𝑥} = {𝑥𝐴𝑃𝑥})
65eleq1d 2683 . . . 4 (𝑝 = 𝑃 → ({𝑥𝐴𝑝𝑥} ∈ Fin ↔ {𝑥𝐴𝑃𝑥} ∈ Fin))
76rspccv 3292 . . 3 (∀𝑝𝑋 {𝑥𝐴𝑝𝑥} ∈ Fin → (𝑃𝑋 → {𝑥𝐴𝑃𝑥} ∈ Fin))
83, 7syl 17 . 2 (𝐴 ∈ PtFin → (𝑃𝑋 → {𝑥𝐴𝑃𝑥} ∈ Fin))
98imp 445 1 ((𝐴 ∈ PtFin ∧ 𝑃𝑋) → {𝑥𝐴𝑃𝑥} ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wral 2907  {crab 2911   cuni 4404  Fincfn 7902  PtFincptfin 21219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-uni 4405  df-ptfin 21222
This theorem is referenced by:  locfindis  21246  comppfsc  21248
  Copyright terms: Public domain W3C validator