MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pthaus Structured version   Visualization version   GIF version

Theorem pthaus 21364
Description: The product of a collection of Hausdorff spaces is Hausdorff. (Contributed by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
pthaus ((𝐴𝑉𝐹:𝐴⟶Haus) → (∏t𝐹) ∈ Haus)

Proof of Theorem pthaus
Dummy variables 𝑘 𝑚 𝑛 𝑥 𝑦 𝑧 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 haustop 21058 . . . . 5 (𝑥 ∈ Haus → 𝑥 ∈ Top)
21ssriv 3591 . . . 4 Haus ⊆ Top
3 fss 6018 . . . 4 ((𝐹:𝐴⟶Haus ∧ Haus ⊆ Top) → 𝐹:𝐴⟶Top)
42, 3mpan2 706 . . 3 (𝐹:𝐴⟶Haus → 𝐹:𝐴⟶Top)
5 pttop 21308 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top) → (∏t𝐹) ∈ Top)
64, 5sylan2 491 . 2 ((𝐴𝑉𝐹:𝐴⟶Haus) → (∏t𝐹) ∈ Top)
7 simprl 793 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑥 (∏t𝐹))
8 eqid 2621 . . . . . . . . . . 11 (∏t𝐹) = (∏t𝐹)
98ptuni 21320 . . . . . . . . . 10 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑘𝐴 (𝐹𝑘) = (∏t𝐹))
104, 9sylan2 491 . . . . . . . . 9 ((𝐴𝑉𝐹:𝐴⟶Haus) → X𝑘𝐴 (𝐹𝑘) = (∏t𝐹))
1110adantr 481 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → X𝑘𝐴 (𝐹𝑘) = (∏t𝐹))
127, 11eleqtrrd 2701 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑥X𝑘𝐴 (𝐹𝑘))
13 ixpfn 7866 . . . . . . 7 (𝑥X𝑘𝐴 (𝐹𝑘) → 𝑥 Fn 𝐴)
1412, 13syl 17 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑥 Fn 𝐴)
15 simprr 795 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑦 (∏t𝐹))
1615, 11eleqtrrd 2701 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑦X𝑘𝐴 (𝐹𝑘))
17 ixpfn 7866 . . . . . . 7 (𝑦X𝑘𝐴 (𝐹𝑘) → 𝑦 Fn 𝐴)
1816, 17syl 17 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑦 Fn 𝐴)
19 eqfnfv 6272 . . . . . 6 ((𝑥 Fn 𝐴𝑦 Fn 𝐴) → (𝑥 = 𝑦 ↔ ∀𝑘𝐴 (𝑥𝑘) = (𝑦𝑘)))
2014, 18, 19syl2anc 692 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → (𝑥 = 𝑦 ↔ ∀𝑘𝐴 (𝑥𝑘) = (𝑦𝑘)))
2120necon3abid 2826 . . . 4 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → (𝑥𝑦 ↔ ¬ ∀𝑘𝐴 (𝑥𝑘) = (𝑦𝑘)))
22 rexnal 2990 . . . . 5 (∃𝑘𝐴 ¬ (𝑥𝑘) = (𝑦𝑘) ↔ ¬ ∀𝑘𝐴 (𝑥𝑘) = (𝑦𝑘))
23 df-ne 2791 . . . . . . 7 ((𝑥𝑘) ≠ (𝑦𝑘) ↔ ¬ (𝑥𝑘) = (𝑦𝑘))
24 simpllr 798 . . . . . . . . . . 11 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → 𝐹:𝐴⟶Haus)
25 simprl 793 . . . . . . . . . . 11 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → 𝑘𝐴)
2624, 25ffvelrnd 6321 . . . . . . . . . 10 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → (𝐹𝑘) ∈ Haus)
27 vex 3192 . . . . . . . . . . . . . . 15 𝑥 ∈ V
2827elixp 7867 . . . . . . . . . . . . . 14 (𝑥X𝑘𝐴 (𝐹𝑘) ↔ (𝑥 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑥𝑘) ∈ (𝐹𝑘)))
2928simprbi 480 . . . . . . . . . . . . 13 (𝑥X𝑘𝐴 (𝐹𝑘) → ∀𝑘𝐴 (𝑥𝑘) ∈ (𝐹𝑘))
3012, 29syl 17 . . . . . . . . . . . 12 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → ∀𝑘𝐴 (𝑥𝑘) ∈ (𝐹𝑘))
3130r19.21bi 2927 . . . . . . . . . . 11 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑘𝐴) → (𝑥𝑘) ∈ (𝐹𝑘))
3231adantrr 752 . . . . . . . . . 10 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → (𝑥𝑘) ∈ (𝐹𝑘))
33 vex 3192 . . . . . . . . . . . . . . 15 𝑦 ∈ V
3433elixp 7867 . . . . . . . . . . . . . 14 (𝑦X𝑘𝐴 (𝐹𝑘) ↔ (𝑦 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑦𝑘) ∈ (𝐹𝑘)))
3534simprbi 480 . . . . . . . . . . . . 13 (𝑦X𝑘𝐴 (𝐹𝑘) → ∀𝑘𝐴 (𝑦𝑘) ∈ (𝐹𝑘))
3616, 35syl 17 . . . . . . . . . . . 12 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → ∀𝑘𝐴 (𝑦𝑘) ∈ (𝐹𝑘))
3736r19.21bi 2927 . . . . . . . . . . 11 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑘𝐴) → (𝑦𝑘) ∈ (𝐹𝑘))
3837adantrr 752 . . . . . . . . . 10 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → (𝑦𝑘) ∈ (𝐹𝑘))
39 simprr 795 . . . . . . . . . 10 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → (𝑥𝑘) ≠ (𝑦𝑘))
40 eqid 2621 . . . . . . . . . . 11 (𝐹𝑘) = (𝐹𝑘)
4140hausnei 21055 . . . . . . . . . 10 (((𝐹𝑘) ∈ Haus ∧ ((𝑥𝑘) ∈ (𝐹𝑘) ∧ (𝑦𝑘) ∈ (𝐹𝑘) ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → ∃𝑚 ∈ (𝐹𝑘)∃𝑛 ∈ (𝐹𝑘)((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))
4226, 32, 38, 39, 41syl13anc 1325 . . . . . . . . 9 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → ∃𝑚 ∈ (𝐹𝑘)∃𝑛 ∈ (𝐹𝑘)((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))
43 simp-4l 805 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝐴𝑉)
444ad4antlr 768 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝐹:𝐴⟶Top)
4525adantr 481 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝑘𝐴)
46 eqid 2621 . . . . . . . . . . . . . . 15 (∏t𝐹) = (∏t𝐹)
4746, 8ptpjcn 21337 . . . . . . . . . . . . . 14 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝑘𝐴) → (𝑧 (∏t𝐹) ↦ (𝑧𝑘)) ∈ ((∏t𝐹) Cn (𝐹𝑘)))
4843, 44, 45, 47syl3anc 1323 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → (𝑧 (∏t𝐹) ↦ (𝑧𝑘)) ∈ ((∏t𝐹) Cn (𝐹𝑘)))
49 simprll 801 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝑚 ∈ (𝐹𝑘))
50 eqid 2621 . . . . . . . . . . . . . . 15 (𝑧 (∏t𝐹) ↦ (𝑧𝑘)) = (𝑧 (∏t𝐹) ↦ (𝑧𝑘))
5150mptpreima 5592 . . . . . . . . . . . . . 14 ((𝑧 (∏t𝐹) ↦ (𝑧𝑘)) “ 𝑚) = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚}
52 cnima 20992 . . . . . . . . . . . . . 14 (((𝑧 (∏t𝐹) ↦ (𝑧𝑘)) ∈ ((∏t𝐹) Cn (𝐹𝑘)) ∧ 𝑚 ∈ (𝐹𝑘)) → ((𝑧 (∏t𝐹) ↦ (𝑧𝑘)) “ 𝑚) ∈ (∏t𝐹))
5351, 52syl5eqelr 2703 . . . . . . . . . . . . 13 (((𝑧 (∏t𝐹) ↦ (𝑧𝑘)) ∈ ((∏t𝐹) Cn (𝐹𝑘)) ∧ 𝑚 ∈ (𝐹𝑘)) → {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∈ (∏t𝐹))
5448, 49, 53syl2anc 692 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∈ (∏t𝐹))
55 simprlr 802 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝑛 ∈ (𝐹𝑘))
5650mptpreima 5592 . . . . . . . . . . . . . 14 ((𝑧 (∏t𝐹) ↦ (𝑧𝑘)) “ 𝑛) = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛}
57 cnima 20992 . . . . . . . . . . . . . 14 (((𝑧 (∏t𝐹) ↦ (𝑧𝑘)) ∈ ((∏t𝐹) Cn (𝐹𝑘)) ∧ 𝑛 ∈ (𝐹𝑘)) → ((𝑧 (∏t𝐹) ↦ (𝑧𝑘)) “ 𝑛) ∈ (∏t𝐹))
5856, 57syl5eqelr 2703 . . . . . . . . . . . . 13 (((𝑧 (∏t𝐹) ↦ (𝑧𝑘)) ∈ ((∏t𝐹) Cn (𝐹𝑘)) ∧ 𝑛 ∈ (𝐹𝑘)) → {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛} ∈ (∏t𝐹))
5948, 55, 58syl2anc 692 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛} ∈ (∏t𝐹))
607ad2antrr 761 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝑥 (∏t𝐹))
61 simprr1 1107 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → (𝑥𝑘) ∈ 𝑚)
62 fveq1 6152 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → (𝑧𝑘) = (𝑥𝑘))
6362eleq1d 2683 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → ((𝑧𝑘) ∈ 𝑚 ↔ (𝑥𝑘) ∈ 𝑚))
6463elrab 3350 . . . . . . . . . . . . 13 (𝑥 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ↔ (𝑥 (∏t𝐹) ∧ (𝑥𝑘) ∈ 𝑚))
6560, 61, 64sylanbrc 697 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝑥 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚})
6615ad2antrr 761 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝑦 (∏t𝐹))
67 simprr2 1108 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → (𝑦𝑘) ∈ 𝑛)
68 fveq1 6152 . . . . . . . . . . . . . . 15 (𝑧 = 𝑦 → (𝑧𝑘) = (𝑦𝑘))
6968eleq1d 2683 . . . . . . . . . . . . . 14 (𝑧 = 𝑦 → ((𝑧𝑘) ∈ 𝑛 ↔ (𝑦𝑘) ∈ 𝑛))
7069elrab 3350 . . . . . . . . . . . . 13 (𝑦 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛} ↔ (𝑦 (∏t𝐹) ∧ (𝑦𝑘) ∈ 𝑛))
7166, 67, 70sylanbrc 697 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝑦 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛})
72 inrab 3880 . . . . . . . . . . . . 13 ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛}) = {𝑧 (∏t𝐹) ∣ ((𝑧𝑘) ∈ 𝑚 ∧ (𝑧𝑘) ∈ 𝑛)}
73 simprr3 1109 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → (𝑚𝑛) = ∅)
74 inelcm 4009 . . . . . . . . . . . . . . . . 17 (((𝑧𝑘) ∈ 𝑚 ∧ (𝑧𝑘) ∈ 𝑛) → (𝑚𝑛) ≠ ∅)
7574necon2bi 2820 . . . . . . . . . . . . . . . 16 ((𝑚𝑛) = ∅ → ¬ ((𝑧𝑘) ∈ 𝑚 ∧ (𝑧𝑘) ∈ 𝑛))
7673, 75syl 17 . . . . . . . . . . . . . . 15 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → ¬ ((𝑧𝑘) ∈ 𝑚 ∧ (𝑧𝑘) ∈ 𝑛))
7776ralrimivw 2962 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → ∀𝑧 (∏t𝐹) ¬ ((𝑧𝑘) ∈ 𝑚 ∧ (𝑧𝑘) ∈ 𝑛))
78 rabeq0 3936 . . . . . . . . . . . . . 14 ({𝑧 (∏t𝐹) ∣ ((𝑧𝑘) ∈ 𝑚 ∧ (𝑧𝑘) ∈ 𝑛)} = ∅ ↔ ∀𝑧 (∏t𝐹) ¬ ((𝑧𝑘) ∈ 𝑚 ∧ (𝑧𝑘) ∈ 𝑛))
7977, 78sylibr 224 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → {𝑧 (∏t𝐹) ∣ ((𝑧𝑘) ∈ 𝑚 ∧ (𝑧𝑘) ∈ 𝑛)} = ∅)
8072, 79syl5eq 2667 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛}) = ∅)
81 eleq2 2687 . . . . . . . . . . . . . 14 (𝑢 = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} → (𝑥𝑢𝑥 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚}))
82 ineq1 3790 . . . . . . . . . . . . . . 15 (𝑢 = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} → (𝑢𝑣) = ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ 𝑣))
8382eqeq1d 2623 . . . . . . . . . . . . . 14 (𝑢 = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} → ((𝑢𝑣) = ∅ ↔ ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ 𝑣) = ∅))
8481, 833anbi13d 1398 . . . . . . . . . . . . 13 (𝑢 = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} → ((𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅) ↔ (𝑥 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∧ 𝑦𝑣 ∧ ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ 𝑣) = ∅)))
85 eleq2 2687 . . . . . . . . . . . . . 14 (𝑣 = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛} → (𝑦𝑣𝑦 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛}))
86 ineq2 3791 . . . . . . . . . . . . . . 15 (𝑣 = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛} → ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ 𝑣) = ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛}))
8786eqeq1d 2623 . . . . . . . . . . . . . 14 (𝑣 = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛} → (({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ 𝑣) = ∅ ↔ ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛}) = ∅))
8885, 873anbi23d 1399 . . . . . . . . . . . . 13 (𝑣 = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛} → ((𝑥 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∧ 𝑦𝑣 ∧ ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ 𝑣) = ∅) ↔ (𝑥 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∧ 𝑦 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛} ∧ ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛}) = ∅)))
8984, 88rspc2ev 3312 . . . . . . . . . . . 12 (({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∈ (∏t𝐹) ∧ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛} ∈ (∏t𝐹) ∧ (𝑥 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∧ 𝑦 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛} ∧ ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛}) = ∅)) → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅))
9054, 59, 65, 71, 80, 89syl113anc 1335 . . . . . . . . . . 11 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅))
9190expr 642 . . . . . . . . . 10 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ (𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘))) → (((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅) → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅)))
9291rexlimdvva 3032 . . . . . . . . 9 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → (∃𝑚 ∈ (𝐹𝑘)∃𝑛 ∈ (𝐹𝑘)((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅) → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅)))
9342, 92mpd 15 . . . . . . . 8 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅))
9493expr 642 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑘𝐴) → ((𝑥𝑘) ≠ (𝑦𝑘) → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅)))
9523, 94syl5bir 233 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑘𝐴) → (¬ (𝑥𝑘) = (𝑦𝑘) → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅)))
9695rexlimdva 3025 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → (∃𝑘𝐴 ¬ (𝑥𝑘) = (𝑦𝑘) → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅)))
9722, 96syl5bir 233 . . . 4 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → (¬ ∀𝑘𝐴 (𝑥𝑘) = (𝑦𝑘) → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅)))
9821, 97sylbid 230 . . 3 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → (𝑥𝑦 → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅)))
9998ralrimivva 2966 . 2 ((𝐴𝑉𝐹:𝐴⟶Haus) → ∀𝑥 (∏t𝐹)∀𝑦 (∏t𝐹)(𝑥𝑦 → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅)))
10046ishaus 21049 . 2 ((∏t𝐹) ∈ Haus ↔ ((∏t𝐹) ∈ Top ∧ ∀𝑥 (∏t𝐹)∀𝑦 (∏t𝐹)(𝑥𝑦 → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅))))
1016, 99, 100sylanbrc 697 1 ((𝐴𝑉𝐹:𝐴⟶Haus) → (∏t𝐹) ∈ Haus)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2907  wrex 2908  {crab 2911  cin 3558  wss 3559  c0 3896   cuni 4407  cmpt 4678  ccnv 5078  cima 5082   Fn wfn 5847  wf 5848  cfv 5852  (class class class)co 6610  Xcixp 7860  tcpt 16031  Topctop 20630   Cn ccn 20951  Hauscha 21035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-map 7811  df-ixp 7861  df-en 7908  df-fin 7911  df-fi 8269  df-topgen 16036  df-pt 16037  df-top 20631  df-topon 20648  df-bases 20674  df-cn 20954  df-haus 21042
This theorem is referenced by:  poimirlem30  33106
  Copyright terms: Public domain W3C validator