MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pthdlem1 Structured version   Visualization version   GIF version

Theorem pthdlem1 27474
Description: Lemma 1 for pthd 27477. (Contributed by Alexander van der Vekens, 13-Nov-2017.) (Revised by AV, 9-Feb-2021.)
Hypotheses
Ref Expression
pthd.p (𝜑𝑃 ∈ Word V)
pthd.r 𝑅 = ((♯‘𝑃) − 1)
pthd.s (𝜑 → ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))
Assertion
Ref Expression
pthdlem1 (𝜑 → Fun (𝑃 ↾ (1..^𝑅)))
Distinct variable groups:   𝑃,𝑖,𝑗   𝑅,𝑖,𝑗   𝜑,𝑖,𝑗

Proof of Theorem pthdlem1
StepHypRef Expression
1 pthd.p . . . . . . . 8 (𝜑𝑃 ∈ Word V)
2 wrdf 13854 . . . . . . . 8 (𝑃 ∈ Word V → 𝑃:(0..^(♯‘𝑃))⟶V)
31, 2syl 17 . . . . . . 7 (𝜑𝑃:(0..^(♯‘𝑃))⟶V)
4 fzo0ss1 13055 . . . . . . . . 9 (1..^𝑅) ⊆ (0..^𝑅)
5 pthd.r . . . . . . . . . . 11 𝑅 = ((♯‘𝑃) − 1)
65a1i 11 . . . . . . . . . 10 (𝜑𝑅 = ((♯‘𝑃) − 1))
76oveq2d 7161 . . . . . . . . 9 (𝜑 → (0..^𝑅) = (0..^((♯‘𝑃) − 1)))
84, 7sseqtrid 4016 . . . . . . . 8 (𝜑 → (1..^𝑅) ⊆ (0..^((♯‘𝑃) − 1)))
9 lencl 13871 . . . . . . . . . 10 (𝑃 ∈ Word V → (♯‘𝑃) ∈ ℕ0)
10 nn0z 11993 . . . . . . . . . 10 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℤ)
111, 9, 103syl 18 . . . . . . . . 9 (𝜑 → (♯‘𝑃) ∈ ℤ)
12 fzossrbm1 13054 . . . . . . . . 9 ((♯‘𝑃) ∈ ℤ → (0..^((♯‘𝑃) − 1)) ⊆ (0..^(♯‘𝑃)))
1311, 12syl 17 . . . . . . . 8 (𝜑 → (0..^((♯‘𝑃) − 1)) ⊆ (0..^(♯‘𝑃)))
148, 13sstrd 3974 . . . . . . 7 (𝜑 → (1..^𝑅) ⊆ (0..^(♯‘𝑃)))
153, 14fssresd 6538 . . . . . 6 (𝜑 → (𝑃 ↾ (1..^𝑅)):(1..^𝑅)⟶V)
1615adantr 481 . . . . 5 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (𝑃 ↾ (1..^𝑅)):(1..^𝑅)⟶V)
17 pthd.s . . . . . . 7 (𝜑 → ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))
1817adantr 481 . . . . . 6 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))
191, 9syl 17 . . . . . . . . . . . 12 (𝜑 → (♯‘𝑃) ∈ ℕ0)
20 nn0re 11894 . . . . . . . . . . . . . . . 16 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℝ)
2120ltm1d 11560 . . . . . . . . . . . . . . 15 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 1) < (♯‘𝑃))
22 1re 10629 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
23 peano2rem 10941 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑃) ∈ ℝ → ((♯‘𝑃) − 1) ∈ ℝ)
2420, 23syl 17 . . . . . . . . . . . . . . . . 17 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 1) ∈ ℝ)
25 lttr 10705 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ ∧ ((♯‘𝑃) − 1) ∈ ℝ ∧ (♯‘𝑃) ∈ ℝ) → ((1 < ((♯‘𝑃) − 1) ∧ ((♯‘𝑃) − 1) < (♯‘𝑃)) → 1 < (♯‘𝑃)))
2622, 24, 20, 25mp3an2i 1457 . . . . . . . . . . . . . . . 16 ((♯‘𝑃) ∈ ℕ0 → ((1 < ((♯‘𝑃) − 1) ∧ ((♯‘𝑃) − 1) < (♯‘𝑃)) → 1 < (♯‘𝑃)))
27 1red 10630 . . . . . . . . . . . . . . . . 17 ((♯‘𝑃) ∈ ℕ0 → 1 ∈ ℝ)
28 ltle 10717 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ ∧ (♯‘𝑃) ∈ ℝ) → (1 < (♯‘𝑃) → 1 ≤ (♯‘𝑃)))
2927, 20, 28syl2anc 584 . . . . . . . . . . . . . . . 16 ((♯‘𝑃) ∈ ℕ0 → (1 < (♯‘𝑃) → 1 ≤ (♯‘𝑃)))
3026, 29syld 47 . . . . . . . . . . . . . . 15 ((♯‘𝑃) ∈ ℕ0 → ((1 < ((♯‘𝑃) − 1) ∧ ((♯‘𝑃) − 1) < (♯‘𝑃)) → 1 ≤ (♯‘𝑃)))
3121, 30mpan2d 690 . . . . . . . . . . . . . 14 ((♯‘𝑃) ∈ ℕ0 → (1 < ((♯‘𝑃) − 1) → 1 ≤ (♯‘𝑃)))
3231imdistani 569 . . . . . . . . . . . . 13 (((♯‘𝑃) ∈ ℕ0 ∧ 1 < ((♯‘𝑃) − 1)) → ((♯‘𝑃) ∈ ℕ0 ∧ 1 ≤ (♯‘𝑃)))
33 elnnnn0c 11930 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℕ ↔ ((♯‘𝑃) ∈ ℕ0 ∧ 1 ≤ (♯‘𝑃)))
3432, 33sylibr 235 . . . . . . . . . . . 12 (((♯‘𝑃) ∈ ℕ0 ∧ 1 < ((♯‘𝑃) − 1)) → (♯‘𝑃) ∈ ℕ)
3519, 34sylan 580 . . . . . . . . . . 11 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (♯‘𝑃) ∈ ℕ)
36 fzo0sn0fzo1 13114 . . . . . . . . . . 11 ((♯‘𝑃) ∈ ℕ → (0..^(♯‘𝑃)) = ({0} ∪ (1..^(♯‘𝑃))))
3735, 36syl 17 . . . . . . . . . 10 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (0..^(♯‘𝑃)) = ({0} ∪ (1..^(♯‘𝑃))))
38 1zzd 12001 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → 1 ∈ ℤ)
39 1p1e2 11750 . . . . . . . . . . . . . . . 16 (1 + 1) = 2
40 2z 12002 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
4139, 40eqeltri 2906 . . . . . . . . . . . . . . 15 (1 + 1) ∈ ℤ
4241a1i 11 . . . . . . . . . . . . . 14 (((♯‘𝑃) ∈ ℕ0 ∧ 1 < ((♯‘𝑃) − 1)) → (1 + 1) ∈ ℤ)
4310adantr 481 . . . . . . . . . . . . . 14 (((♯‘𝑃) ∈ ℕ0 ∧ 1 < ((♯‘𝑃) − 1)) → (♯‘𝑃) ∈ ℤ)
44 ltaddsub 11102 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ ∧ 1 ∈ ℝ ∧ (♯‘𝑃) ∈ ℝ) → ((1 + 1) < (♯‘𝑃) ↔ 1 < ((♯‘𝑃) − 1)))
4544bicomd 224 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ ∧ 1 ∈ ℝ ∧ (♯‘𝑃) ∈ ℝ) → (1 < ((♯‘𝑃) − 1) ↔ (1 + 1) < (♯‘𝑃)))
4622, 27, 20, 45mp3an2i 1457 . . . . . . . . . . . . . . . 16 ((♯‘𝑃) ∈ ℕ0 → (1 < ((♯‘𝑃) − 1) ↔ (1 + 1) < (♯‘𝑃)))
47 2re 11699 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
4839, 47eqeltri 2906 . . . . . . . . . . . . . . . . 17 (1 + 1) ∈ ℝ
49 ltle 10717 . . . . . . . . . . . . . . . . 17 (((1 + 1) ∈ ℝ ∧ (♯‘𝑃) ∈ ℝ) → ((1 + 1) < (♯‘𝑃) → (1 + 1) ≤ (♯‘𝑃)))
5048, 20, 49sylancr 587 . . . . . . . . . . . . . . . 16 ((♯‘𝑃) ∈ ℕ0 → ((1 + 1) < (♯‘𝑃) → (1 + 1) ≤ (♯‘𝑃)))
5146, 50sylbid 241 . . . . . . . . . . . . . . 15 ((♯‘𝑃) ∈ ℕ0 → (1 < ((♯‘𝑃) − 1) → (1 + 1) ≤ (♯‘𝑃)))
5251imp 407 . . . . . . . . . . . . . 14 (((♯‘𝑃) ∈ ℕ0 ∧ 1 < ((♯‘𝑃) − 1)) → (1 + 1) ≤ (♯‘𝑃))
53 eluz2 12237 . . . . . . . . . . . . . 14 ((♯‘𝑃) ∈ (ℤ‘(1 + 1)) ↔ ((1 + 1) ∈ ℤ ∧ (♯‘𝑃) ∈ ℤ ∧ (1 + 1) ≤ (♯‘𝑃)))
5442, 43, 52, 53syl3anbrc 1335 . . . . . . . . . . . . 13 (((♯‘𝑃) ∈ ℕ0 ∧ 1 < ((♯‘𝑃) − 1)) → (♯‘𝑃) ∈ (ℤ‘(1 + 1)))
5519, 54sylan 580 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (♯‘𝑃) ∈ (ℤ‘(1 + 1)))
56 fzosplitsnm1 13100 . . . . . . . . . . . 12 ((1 ∈ ℤ ∧ (♯‘𝑃) ∈ (ℤ‘(1 + 1))) → (1..^(♯‘𝑃)) = ((1..^((♯‘𝑃) − 1)) ∪ {((♯‘𝑃) − 1)}))
5738, 55, 56syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (1..^(♯‘𝑃)) = ((1..^((♯‘𝑃) − 1)) ∪ {((♯‘𝑃) − 1)}))
5857uneq2d 4136 . . . . . . . . . 10 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → ({0} ∪ (1..^(♯‘𝑃))) = ({0} ∪ ((1..^((♯‘𝑃) − 1)) ∪ {((♯‘𝑃) − 1)})))
5937, 58eqtrd 2853 . . . . . . . . 9 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (0..^(♯‘𝑃)) = ({0} ∪ ((1..^((♯‘𝑃) − 1)) ∪ {((♯‘𝑃) − 1)})))
6059raleqdv 3413 . . . . . . . 8 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ↔ ∀𝑖 ∈ ({0} ∪ ((1..^((♯‘𝑃) − 1)) ∪ {((♯‘𝑃) − 1)}))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗))))
61 ralunb 4164 . . . . . . . . 9 (∀𝑖 ∈ ({0} ∪ ((1..^((♯‘𝑃) − 1)) ∪ {((♯‘𝑃) − 1)}))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ↔ (∀𝑖 ∈ {0}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ ∀𝑖 ∈ ((1..^((♯‘𝑃) − 1)) ∪ {((♯‘𝑃) − 1)})∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗))))
62 ralunb 4164 . . . . . . . . . 10 (∀𝑖 ∈ ((1..^((♯‘𝑃) − 1)) ∪ {((♯‘𝑃) − 1)})∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ↔ (∀𝑖 ∈ (1..^((♯‘𝑃) − 1))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ ∀𝑖 ∈ {((♯‘𝑃) − 1)}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗))))
6362anbi2i 622 . . . . . . . . 9 ((∀𝑖 ∈ {0}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ ∀𝑖 ∈ ((1..^((♯‘𝑃) − 1)) ∪ {((♯‘𝑃) − 1)})∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗))) ↔ (∀𝑖 ∈ {0}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ (∀𝑖 ∈ (1..^((♯‘𝑃) − 1))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ ∀𝑖 ∈ {((♯‘𝑃) − 1)}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))))
6461, 63bitri 276 . . . . . . . 8 (∀𝑖 ∈ ({0} ∪ ((1..^((♯‘𝑃) − 1)) ∪ {((♯‘𝑃) − 1)}))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ↔ (∀𝑖 ∈ {0}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ (∀𝑖 ∈ (1..^((♯‘𝑃) − 1))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ ∀𝑖 ∈ {((♯‘𝑃) − 1)}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))))
6560, 64syl6bb 288 . . . . . . 7 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ↔ (∀𝑖 ∈ {0}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ (∀𝑖 ∈ (1..^((♯‘𝑃) − 1))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ ∀𝑖 ∈ {((♯‘𝑃) − 1)}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗))))))
665eqcomi 2827 . . . . . . . . . . . 12 ((♯‘𝑃) − 1) = 𝑅
6766oveq2i 7156 . . . . . . . . . . 11 (1..^((♯‘𝑃) − 1)) = (1..^𝑅)
6867raleqi 3411 . . . . . . . . . 10 (∀𝑖 ∈ (1..^((♯‘𝑃) − 1))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ↔ ∀𝑖 ∈ (1..^𝑅)∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))
69 fvres 6682 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (1..^𝑅) → ((𝑃 ↾ (1..^𝑅))‘𝑖) = (𝑃𝑖))
7069eqcomd 2824 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (1..^𝑅) → (𝑃𝑖) = ((𝑃 ↾ (1..^𝑅))‘𝑖))
7170adantl 482 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) ∧ 𝑖 ∈ (1..^𝑅)) → (𝑃𝑖) = ((𝑃 ↾ (1..^𝑅))‘𝑖))
7271adantr 481 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) ∧ 𝑖 ∈ (1..^𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → (𝑃𝑖) = ((𝑃 ↾ (1..^𝑅))‘𝑖))
73 fvres 6682 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (1..^𝑅) → ((𝑃 ↾ (1..^𝑅))‘𝑗) = (𝑃𝑗))
7473eqcomd 2824 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1..^𝑅) → (𝑃𝑗) = ((𝑃 ↾ (1..^𝑅))‘𝑗))
7574adantl 482 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) ∧ 𝑖 ∈ (1..^𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → (𝑃𝑗) = ((𝑃 ↾ (1..^𝑅))‘𝑗))
7672, 75neeq12d 3074 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) ∧ 𝑖 ∈ (1..^𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → ((𝑃𝑖) ≠ (𝑃𝑗) ↔ ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗)))
7776biimpd 230 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) ∧ 𝑖 ∈ (1..^𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → ((𝑃𝑖) ≠ (𝑃𝑗) → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗)))
7877imim2d 57 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) ∧ 𝑖 ∈ (1..^𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → ((𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → (𝑖𝑗 → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗))))
7978ralimdva 3174 . . . . . . . . . . 11 (((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) ∧ 𝑖 ∈ (1..^𝑅)) → (∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → ∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗))))
8079ralimdva 3174 . . . . . . . . . 10 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (∀𝑖 ∈ (1..^𝑅)∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → ∀𝑖 ∈ (1..^𝑅)∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗))))
8168, 80syl5bi 243 . . . . . . . . 9 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (∀𝑖 ∈ (1..^((♯‘𝑃) − 1))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → ∀𝑖 ∈ (1..^𝑅)∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗))))
8281adantrd 492 . . . . . . . 8 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → ((∀𝑖 ∈ (1..^((♯‘𝑃) − 1))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ ∀𝑖 ∈ {((♯‘𝑃) − 1)}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗))) → ∀𝑖 ∈ (1..^𝑅)∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗))))
8382adantld 491 . . . . . . 7 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → ((∀𝑖 ∈ {0}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ (∀𝑖 ∈ (1..^((♯‘𝑃) − 1))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ ∀𝑖 ∈ {((♯‘𝑃) − 1)}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))) → ∀𝑖 ∈ (1..^𝑅)∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗))))
8465, 83sylbid 241 . . . . . 6 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → ∀𝑖 ∈ (1..^𝑅)∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗))))
8518, 84mpd 15 . . . . 5 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → ∀𝑖 ∈ (1..^𝑅)∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗)))
86 dff14a 7019 . . . . 5 ((𝑃 ↾ (1..^𝑅)):(1..^𝑅)–1-1→V ↔ ((𝑃 ↾ (1..^𝑅)):(1..^𝑅)⟶V ∧ ∀𝑖 ∈ (1..^𝑅)∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗))))
8716, 85, 86sylanbrc 583 . . . 4 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (𝑃 ↾ (1..^𝑅)):(1..^𝑅)–1-1→V)
88 df-f1 6353 . . . 4 ((𝑃 ↾ (1..^𝑅)):(1..^𝑅)–1-1→V ↔ ((𝑃 ↾ (1..^𝑅)):(1..^𝑅)⟶V ∧ Fun (𝑃 ↾ (1..^𝑅))))
8987, 88sylib 219 . . 3 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → ((𝑃 ↾ (1..^𝑅)):(1..^𝑅)⟶V ∧ Fun (𝑃 ↾ (1..^𝑅))))
9089simprd 496 . 2 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → Fun (𝑃 ↾ (1..^𝑅)))
91 funcnv0 6413 . . 3 Fun
9219nn0zd 12073 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝑃) ∈ ℤ)
93 peano2zm 12013 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℤ → ((♯‘𝑃) − 1) ∈ ℤ)
9492, 93syl 17 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝑃) − 1) ∈ ℤ)
9594zred 12075 . . . . . . . . . . 11 (𝜑 → ((♯‘𝑃) − 1) ∈ ℝ)
96 1red 10630 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℝ)
9795, 96lenltd 10774 . . . . . . . . . 10 (𝜑 → (((♯‘𝑃) − 1) ≤ 1 ↔ ¬ 1 < ((♯‘𝑃) − 1)))
9897biimpar 478 . . . . . . . . 9 ((𝜑 ∧ ¬ 1 < ((♯‘𝑃) − 1)) → ((♯‘𝑃) − 1) ≤ 1)
995, 98eqbrtrid 5092 . . . . . . . 8 ((𝜑 ∧ ¬ 1 < ((♯‘𝑃) − 1)) → 𝑅 ≤ 1)
100 1zzd 12001 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℤ)
1015, 94eqeltrid 2914 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℤ)
102100, 101jca 512 . . . . . . . . . 10 (𝜑 → (1 ∈ ℤ ∧ 𝑅 ∈ ℤ))
103102adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ 1 < ((♯‘𝑃) − 1)) → (1 ∈ ℤ ∧ 𝑅 ∈ ℤ))
104 fzon 13046 . . . . . . . . . 10 ((1 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (𝑅 ≤ 1 ↔ (1..^𝑅) = ∅))
105104bicomd 224 . . . . . . . . 9 ((1 ∈ ℤ ∧ 𝑅 ∈ ℤ) → ((1..^𝑅) = ∅ ↔ 𝑅 ≤ 1))
106103, 105syl 17 . . . . . . . 8 ((𝜑 ∧ ¬ 1 < ((♯‘𝑃) − 1)) → ((1..^𝑅) = ∅ ↔ 𝑅 ≤ 1))
10799, 106mpbird 258 . . . . . . 7 ((𝜑 ∧ ¬ 1 < ((♯‘𝑃) − 1)) → (1..^𝑅) = ∅)
108107reseq2d 5846 . . . . . 6 ((𝜑 ∧ ¬ 1 < ((♯‘𝑃) − 1)) → (𝑃 ↾ (1..^𝑅)) = (𝑃 ↾ ∅))
109 res0 5850 . . . . . 6 (𝑃 ↾ ∅) = ∅
110108, 109syl6eq 2869 . . . . 5 ((𝜑 ∧ ¬ 1 < ((♯‘𝑃) − 1)) → (𝑃 ↾ (1..^𝑅)) = ∅)
111110cnveqd 5739 . . . 4 ((𝜑 ∧ ¬ 1 < ((♯‘𝑃) − 1)) → (𝑃 ↾ (1..^𝑅)) = ∅)
112111funeqd 6370 . . 3 ((𝜑 ∧ ¬ 1 < ((♯‘𝑃) − 1)) → (Fun (𝑃 ↾ (1..^𝑅)) ↔ Fun ∅))
11391, 112mpbiri 259 . 2 ((𝜑 ∧ ¬ 1 < ((♯‘𝑃) − 1)) → Fun (𝑃 ↾ (1..^𝑅)))
11490, 113pm2.61dan 809 1 (𝜑 → Fun (𝑃 ↾ (1..^𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3013  wral 3135  Vcvv 3492  cun 3931  wss 3933  c0 4288  {csn 4557   class class class wbr 5057  ccnv 5547  cres 5550  Fun wfun 6342  wf 6344  1-1wf1 6345  cfv 6348  (class class class)co 7145  cr 10524  0cc0 10525  1c1 10526   + caddc 10528   < clt 10663  cle 10664  cmin 10858  cn 11626  2c2 11680  0cn0 11885  cz 11969  cuz 12231  ..^cfzo 13021  chash 13678  Word cword 13849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881  df-fzo 13022  df-hash 13679  df-word 13850
This theorem is referenced by:  pthd  27477
  Copyright terms: Public domain W3C validator