MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptpjcn Structured version   Visualization version   GIF version

Theorem ptpjcn 21337
Description: Continuity of a projection map into a topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 3-Feb-2015.)
Hypotheses
Ref Expression
ptpjcn.1 𝑌 = 𝐽
ptpjcn.2 𝐽 = (∏t𝐹)
Assertion
Ref Expression
ptpjcn ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → (𝑥𝑌 ↦ (𝑥𝐼)) ∈ (𝐽 Cn (𝐹𝐼)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐼   𝑥,𝑉   𝑥,𝑌
Allowed substitution hint:   𝐽(𝑥)

Proof of Theorem ptpjcn
Dummy variables 𝑔 𝑘 𝑢 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptpjcn.2 . . . . . 6 𝐽 = (∏t𝐹)
21ptuni 21320 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑘𝐴 (𝐹𝑘) = 𝐽)
323adant3 1079 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → X𝑘𝐴 (𝐹𝑘) = 𝐽)
4 ptpjcn.1 . . . 4 𝑌 = 𝐽
53, 4syl6reqr 2674 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → 𝑌 = X𝑘𝐴 (𝐹𝑘))
65mpteq1d 4703 . 2 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → (𝑥𝑌 ↦ (𝑥𝐼)) = (𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)))
7 pttop 21308 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶Top) → (∏t𝐹) ∈ Top)
873adant3 1079 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → (∏t𝐹) ∈ Top)
91, 8syl5eqel 2702 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → 𝐽 ∈ Top)
10 ffvelrn 6318 . . . . 5 ((𝐹:𝐴⟶Top ∧ 𝐼𝐴) → (𝐹𝐼) ∈ Top)
11103adant1 1077 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → (𝐹𝐼) ∈ Top)
129, 11jca 554 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → (𝐽 ∈ Top ∧ (𝐹𝐼) ∈ Top))
13 vex 3192 . . . . . . . . . 10 𝑥 ∈ V
1413elixp 7867 . . . . . . . . 9 (𝑥X𝑘𝐴 (𝐹𝑘) ↔ (𝑥 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑥𝑘) ∈ (𝐹𝑘)))
1514simprbi 480 . . . . . . . 8 (𝑥X𝑘𝐴 (𝐹𝑘) → ∀𝑘𝐴 (𝑥𝑘) ∈ (𝐹𝑘))
16 fveq2 6153 . . . . . . . . . 10 (𝑘 = 𝐼 → (𝑥𝑘) = (𝑥𝐼))
17 fveq2 6153 . . . . . . . . . . 11 (𝑘 = 𝐼 → (𝐹𝑘) = (𝐹𝐼))
1817unieqd 4417 . . . . . . . . . 10 (𝑘 = 𝐼 (𝐹𝑘) = (𝐹𝐼))
1916, 18eleq12d 2692 . . . . . . . . 9 (𝑘 = 𝐼 → ((𝑥𝑘) ∈ (𝐹𝑘) ↔ (𝑥𝐼) ∈ (𝐹𝐼)))
2019rspcva 3296 . . . . . . . 8 ((𝐼𝐴 ∧ ∀𝑘𝐴 (𝑥𝑘) ∈ (𝐹𝑘)) → (𝑥𝐼) ∈ (𝐹𝐼))
2115, 20sylan2 491 . . . . . . 7 ((𝐼𝐴𝑥X𝑘𝐴 (𝐹𝑘)) → (𝑥𝐼) ∈ (𝐹𝐼))
22213ad2antl3 1223 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑥X𝑘𝐴 (𝐹𝑘)) → (𝑥𝐼) ∈ (𝐹𝐼))
23 eqid 2621 . . . . . 6 (𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)) = (𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼))
2422, 23fmptd 6346 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → (𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)):X𝑘𝐴 (𝐹𝑘)⟶ (𝐹𝐼))
255feq2d 5993 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → ((𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)):𝑌 (𝐹𝐼) ↔ (𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)):X𝑘𝐴 (𝐹𝑘)⟶ (𝐹𝐼)))
2624, 25mpbird 247 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → (𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)):𝑌 (𝐹𝐼))
27 eqid 2621 . . . . . . . . . . . 12 {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))} = {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))}
2827ptbas 21305 . . . . . . . . . . 11 ((𝐴𝑉𝐹:𝐴⟶Top) → {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))} ∈ TopBases)
29 bastg 20694 . . . . . . . . . . 11 ({𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))} ∈ TopBases → {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))} ⊆ (topGen‘{𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))}))
3028, 29syl 17 . . . . . . . . . 10 ((𝐴𝑉𝐹:𝐴⟶Top) → {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))} ⊆ (topGen‘{𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))}))
31 ffn 6007 . . . . . . . . . . 11 (𝐹:𝐴⟶Top → 𝐹 Fn 𝐴)
3227ptval 21296 . . . . . . . . . . . 12 ((𝐴𝑉𝐹 Fn 𝐴) → (∏t𝐹) = (topGen‘{𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))}))
331, 32syl5eq 2667 . . . . . . . . . . 11 ((𝐴𝑉𝐹 Fn 𝐴) → 𝐽 = (topGen‘{𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))}))
3431, 33sylan2 491 . . . . . . . . . 10 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐽 = (topGen‘{𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))}))
3530, 34sseqtr4d 3626 . . . . . . . . 9 ((𝐴𝑉𝐹:𝐴⟶Top) → {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))} ⊆ 𝐽)
3635adantr 481 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑢 ∈ (𝐹𝐼))) → {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))} ⊆ 𝐽)
37 eqid 2621 . . . . . . . . 9 X𝑘𝐴 (𝐹𝑘) = X𝑘𝐴 (𝐹𝑘)
3827, 37ptpjpre2 21306 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑢 ∈ (𝐹𝐼))) → ((𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)) “ 𝑢) ∈ {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))})
3936, 38sseldd 3588 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑢 ∈ (𝐹𝐼))) → ((𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)) “ 𝑢) ∈ 𝐽)
4039expr 642 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ 𝐼𝐴) → (𝑢 ∈ (𝐹𝐼) → ((𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)) “ 𝑢) ∈ 𝐽))
4140ralrimiv 2960 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ 𝐼𝐴) → ∀𝑢 ∈ (𝐹𝐼)((𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)) “ 𝑢) ∈ 𝐽)
42413impa 1256 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → ∀𝑢 ∈ (𝐹𝐼)((𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)) “ 𝑢) ∈ 𝐽)
4326, 42jca 554 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → ((𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)):𝑌 (𝐹𝐼) ∧ ∀𝑢 ∈ (𝐹𝐼)((𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)) “ 𝑢) ∈ 𝐽))
44 eqid 2621 . . . 4 (𝐹𝐼) = (𝐹𝐼)
454, 44iscn2 20965 . . 3 ((𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)) ∈ (𝐽 Cn (𝐹𝐼)) ↔ ((𝐽 ∈ Top ∧ (𝐹𝐼) ∈ Top) ∧ ((𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)):𝑌 (𝐹𝐼) ∧ ∀𝑢 ∈ (𝐹𝐼)((𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)) “ 𝑢) ∈ 𝐽)))
4612, 43, 45sylanbrc 697 . 2 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → (𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)) ∈ (𝐽 Cn (𝐹𝐼)))
476, 46eqeltrd 2698 1 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → (𝑥𝑌 ↦ (𝑥𝐼)) ∈ (𝐽 Cn (𝐹𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wex 1701  wcel 1987  {cab 2607  wral 2907  wrex 2908  cdif 3556  wss 3559   cuni 4407  cmpt 4678  ccnv 5078  cima 5082   Fn wfn 5847  wf 5848  cfv 5852  (class class class)co 6610  Xcixp 7860  Fincfn 7907  topGenctg 16030  tcpt 16031  Topctop 20630  TopBasesctb 20673   Cn ccn 20951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-map 7811  df-ixp 7861  df-en 7908  df-fin 7911  df-fi 8269  df-topgen 16036  df-pt 16037  df-top 20631  df-topon 20648  df-bases 20674  df-cn 20954
This theorem is referenced by:  pthaus  21364  ptrescn  21365  xkopjcn  21382  pt1hmeo  21532  ptunhmeo  21534  tmdgsum  21822  symgtgp  21828  prdstmdd  21850  prdstgpd  21851  poimir  33109  broucube  33110
  Copyright terms: Public domain W3C validator