Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptpjpre2 Structured version   Visualization version   GIF version

Theorem ptpjpre2 21364
 Description: The basis for a product topology is a basis. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypotheses
Ref Expression
ptbas.1 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
ptbasfi.2 𝑋 = X𝑛𝐴 (𝐹𝑛)
Assertion
Ref Expression
ptpjpre2 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → ((𝑤𝑋 ↦ (𝑤𝐼)) “ 𝑈) ∈ 𝐵)
Distinct variable groups:   𝐵,𝑛   𝑤,𝑔,𝑥,𝑦,𝑛,𝐼   𝑧,𝑔,𝐴,𝑛,𝑤,𝑥,𝑦   𝑈,𝑔,𝑛,𝑤,𝑥,𝑦   𝑔,𝐹,𝑛,𝑤,𝑥,𝑦,𝑧   𝑔,𝑋,𝑤,𝑥,𝑧   𝑔,𝑉,𝑛,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑤,𝑔)   𝑈(𝑧)   𝐼(𝑧)   𝑋(𝑦,𝑛)

Proof of Theorem ptpjpre2
StepHypRef Expression
1 ptbasfi.2 . . 3 𝑋 = X𝑛𝐴 (𝐹𝑛)
21ptpjpre1 21355 . 2 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → ((𝑤𝑋 ↦ (𝑤𝐼)) “ 𝑈) = X𝑛𝐴 if(𝑛 = 𝐼, 𝑈, (𝐹𝑛)))
3 ptbas.1 . . 3 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
4 simpll 789 . . 3 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → 𝐴𝑉)
5 snfi 8023 . . . 4 {𝐼} ∈ Fin
65a1i 11 . . 3 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → {𝐼} ∈ Fin)
7 simprr 795 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → 𝑈 ∈ (𝐹𝐼))
87ad2antrr 761 . . . . 5 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑛𝐴) ∧ 𝑛 = 𝐼) → 𝑈 ∈ (𝐹𝐼))
9 simpr 477 . . . . . 6 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑛𝐴) ∧ 𝑛 = 𝐼) → 𝑛 = 𝐼)
109fveq2d 6182 . . . . 5 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑛𝐴) ∧ 𝑛 = 𝐼) → (𝐹𝑛) = (𝐹𝐼))
118, 10eleqtrrd 2702 . . . 4 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑛𝐴) ∧ 𝑛 = 𝐼) → 𝑈 ∈ (𝐹𝑛))
12 simplr 791 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → 𝐹:𝐴⟶Top)
1312ffvelrnda 6345 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑛𝐴) → (𝐹𝑛) ∈ Top)
14 eqid 2620 . . . . . . 7 (𝐹𝑛) = (𝐹𝑛)
1514topopn 20692 . . . . . 6 ((𝐹𝑛) ∈ Top → (𝐹𝑛) ∈ (𝐹𝑛))
1613, 15syl 17 . . . . 5 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑛𝐴) → (𝐹𝑛) ∈ (𝐹𝑛))
1716adantr 481 . . . 4 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑛𝐴) ∧ ¬ 𝑛 = 𝐼) → (𝐹𝑛) ∈ (𝐹𝑛))
1811, 17ifclda 4111 . . 3 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑛𝐴) → if(𝑛 = 𝐼, 𝑈, (𝐹𝑛)) ∈ (𝐹𝑛))
19 eldifsni 4311 . . . . . 6 (𝑛 ∈ (𝐴 ∖ {𝐼}) → 𝑛𝐼)
2019neneqd 2796 . . . . 5 (𝑛 ∈ (𝐴 ∖ {𝐼}) → ¬ 𝑛 = 𝐼)
2120adantl 482 . . . 4 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑛 ∈ (𝐴 ∖ {𝐼})) → ¬ 𝑛 = 𝐼)
2221iffalsed 4088 . . 3 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑛 ∈ (𝐴 ∖ {𝐼})) → if(𝑛 = 𝐼, 𝑈, (𝐹𝑛)) = (𝐹𝑛))
233, 4, 6, 18, 22elptr2 21358 . 2 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → X𝑛𝐴 if(𝑛 = 𝐼, 𝑈, (𝐹𝑛)) ∈ 𝐵)
242, 23eqeltrd 2699 1 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → ((𝑤𝑋 ↦ (𝑤𝐼)) “ 𝑈) ∈ 𝐵)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 384   ∧ w3a 1036   = wceq 1481  ∃wex 1702   ∈ wcel 1988  {cab 2606  ∀wral 2909  ∃wrex 2910   ∖ cdif 3564  ifcif 4077  {csn 4168  ∪ cuni 4427   ↦ cmpt 4720  ◡ccnv 5103   “ cima 5107   Fn wfn 5871  ⟶wf 5872  ‘cfv 5876  Xcixp 7893  Fincfn 7940  Topctop 20679 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-om 7051  df-1o 7545  df-ixp 7894  df-en 7941  df-fin 7944  df-top 20680 This theorem is referenced by:  ptbasfi  21365  ptpjcn  21395
 Copyright terms: Public domain W3C validator