MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptunimpt Structured version   Visualization version   GIF version

Theorem ptunimpt 21379
Description: Base set of a product topology given by substitution. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Hypothesis
Ref Expression
ptunimpt.j 𝐽 = (∏t‘(𝑥𝐴𝐾))
Assertion
Ref Expression
ptunimpt ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ Top) → X𝑥𝐴 𝐾 = 𝐽)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐽(𝑥)   𝐾(𝑥)   𝑉(𝑥)

Proof of Theorem ptunimpt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2620 . . . . . . . . 9 (𝑥𝐴𝐾) = (𝑥𝐴𝐾)
21fvmpt2 6278 . . . . . . . 8 ((𝑥𝐴𝐾 ∈ Top) → ((𝑥𝐴𝐾)‘𝑥) = 𝐾)
32eqcomd 2626 . . . . . . 7 ((𝑥𝐴𝐾 ∈ Top) → 𝐾 = ((𝑥𝐴𝐾)‘𝑥))
43unieqd 4437 . . . . . 6 ((𝑥𝐴𝐾 ∈ Top) → 𝐾 = ((𝑥𝐴𝐾)‘𝑥))
54ralimiaa 2948 . . . . 5 (∀𝑥𝐴 𝐾 ∈ Top → ∀𝑥𝐴 𝐾 = ((𝑥𝐴𝐾)‘𝑥))
65adantl 482 . . . 4 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ Top) → ∀𝑥𝐴 𝐾 = ((𝑥𝐴𝐾)‘𝑥))
7 ixpeq2 7907 . . . 4 (∀𝑥𝐴 𝐾 = ((𝑥𝐴𝐾)‘𝑥) → X𝑥𝐴 𝐾 = X𝑥𝐴 ((𝑥𝐴𝐾)‘𝑥))
86, 7syl 17 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ Top) → X𝑥𝐴 𝐾 = X𝑥𝐴 ((𝑥𝐴𝐾)‘𝑥))
9 nffvmpt1 6186 . . . . 5 𝑥((𝑥𝐴𝐾)‘𝑦)
109nfuni 4433 . . . 4 𝑥 ((𝑥𝐴𝐾)‘𝑦)
11 nfcv 2762 . . . 4 𝑦 ((𝑥𝐴𝐾)‘𝑥)
12 fveq2 6178 . . . . 5 (𝑦 = 𝑥 → ((𝑥𝐴𝐾)‘𝑦) = ((𝑥𝐴𝐾)‘𝑥))
1312unieqd 4437 . . . 4 (𝑦 = 𝑥 ((𝑥𝐴𝐾)‘𝑦) = ((𝑥𝐴𝐾)‘𝑥))
1410, 11, 13cbvixp 7910 . . 3 X𝑦𝐴 ((𝑥𝐴𝐾)‘𝑦) = X𝑥𝐴 ((𝑥𝐴𝐾)‘𝑥)
158, 14syl6eqr 2672 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ Top) → X𝑥𝐴 𝐾 = X𝑦𝐴 ((𝑥𝐴𝐾)‘𝑦))
161fmpt 6367 . . 3 (∀𝑥𝐴 𝐾 ∈ Top ↔ (𝑥𝐴𝐾):𝐴⟶Top)
17 ptunimpt.j . . . 4 𝐽 = (∏t‘(𝑥𝐴𝐾))
1817ptuni 21378 . . 3 ((𝐴𝑉 ∧ (𝑥𝐴𝐾):𝐴⟶Top) → X𝑦𝐴 ((𝑥𝐴𝐾)‘𝑦) = 𝐽)
1916, 18sylan2b 492 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ Top) → X𝑦𝐴 ((𝑥𝐴𝐾)‘𝑦) = 𝐽)
2015, 19eqtrd 2654 1 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ Top) → X𝑥𝐴 𝐾 = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1481  wcel 1988  wral 2909   cuni 4427  cmpt 4720  wf 5872  cfv 5876  Xcixp 7893  tcpt 16080  Topctop 20679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-oadd 7549  df-er 7727  df-ixp 7894  df-en 7941  df-fin 7944  df-fi 8302  df-topgen 16085  df-pt 16086  df-top 20680  df-bases 20731
This theorem is referenced by:  pttopon  21380  kelac1  37452
  Copyright terms: Public domain W3C validator