Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pw2f1ocnv Structured version   Visualization version   GIF version

Theorem pw2f1ocnv 39641
Description: Define a bijection between characteristic functions and subsets. EDITORIAL: extracted from pw2en 8626, which can be easily reproved in terms of this. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Stefan O'Rear, 9-Jul-2015.)
Hypothesis
Ref Expression
pw2f1o2.f 𝐹 = (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o}))
Assertion
Ref Expression
pw2f1ocnv (𝐴𝑉 → (𝐹:(2om 𝐴)–1-1-onto→𝒫 𝐴𝐹 = (𝑦 ∈ 𝒫 𝐴 ↦ (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)))))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝑉,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧)   𝑉(𝑧)

Proof of Theorem pw2f1ocnv
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 pw2f1o2.f . 2 𝐹 = (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o}))
2 vex 3499 . . . 4 𝑥 ∈ V
32cnvex 7632 . . 3 𝑥 ∈ V
4 imaexg 7622 . . 3 (𝑥 ∈ V → (𝑥 “ {1o}) ∈ V)
53, 4mp1i 13 . 2 ((𝐴𝑉𝑥 ∈ (2om 𝐴)) → (𝑥 “ {1o}) ∈ V)
6 mptexg 6986 . . 3 (𝐴𝑉 → (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)) ∈ V)
76adantr 483 . 2 ((𝐴𝑉𝑦 ∈ 𝒫 𝐴) → (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)) ∈ V)
8 2on 8113 . . . . . 6 2o ∈ On
9 elmapg 8421 . . . . . 6 ((2o ∈ On ∧ 𝐴𝑉) → (𝑥 ∈ (2om 𝐴) ↔ 𝑥:𝐴⟶2o))
108, 9mpan 688 . . . . 5 (𝐴𝑉 → (𝑥 ∈ (2om 𝐴) ↔ 𝑥:𝐴⟶2o))
1110anbi1d 631 . . . 4 (𝐴𝑉 → ((𝑥 ∈ (2om 𝐴) ∧ 𝑦 = (𝑥 “ {1o})) ↔ (𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o}))))
12 1oex 8112 . . . . . . . . . . . 12 1o ∈ V
1312sucid 6272 . . . . . . . . . . 11 1o ∈ suc 1o
14 df-2o 8105 . . . . . . . . . . 11 2o = suc 1o
1513, 14eleqtrri 2914 . . . . . . . . . 10 1o ∈ 2o
16 0ex 5213 . . . . . . . . . . . 12 ∅ ∈ V
1716prid1 4700 . . . . . . . . . . 11 ∅ ∈ {∅, {∅}}
18 df2o2 8120 . . . . . . . . . . 11 2o = {∅, {∅}}
1917, 18eleqtrri 2914 . . . . . . . . . 10 ∅ ∈ 2o
2015, 19ifcli 4515 . . . . . . . . 9 if(𝑧𝑦, 1o, ∅) ∈ 2o
2120rgenw 3152 . . . . . . . 8 𝑧𝐴 if(𝑧𝑦, 1o, ∅) ∈ 2o
22 eqid 2823 . . . . . . . . 9 (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)) = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))
2322fmpt 6876 . . . . . . . 8 (∀𝑧𝐴 if(𝑧𝑦, 1o, ∅) ∈ 2o ↔ (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)):𝐴⟶2o)
2421, 23mpbi 232 . . . . . . 7 (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)):𝐴⟶2o
25 simpr 487 . . . . . . . 8 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) → 𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)))
2625feq1d 6501 . . . . . . 7 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) → (𝑥:𝐴⟶2o ↔ (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)):𝐴⟶2o))
2724, 26mpbiri 260 . . . . . 6 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) → 𝑥:𝐴⟶2o)
2825fveq1d 6674 . . . . . . . . . . . . 13 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) → (𝑥𝑤) = ((𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))‘𝑤))
29 elequ1 2121 . . . . . . . . . . . . . . 15 (𝑧 = 𝑤 → (𝑧𝑦𝑤𝑦))
3029ifbid 4491 . . . . . . . . . . . . . 14 (𝑧 = 𝑤 → if(𝑧𝑦, 1o, ∅) = if(𝑤𝑦, 1o, ∅))
3112, 16ifcli 4515 . . . . . . . . . . . . . 14 if(𝑤𝑦, 1o, ∅) ∈ V
3230, 22, 31fvmpt 6770 . . . . . . . . . . . . 13 (𝑤𝐴 → ((𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))‘𝑤) = if(𝑤𝑦, 1o, ∅))
3328, 32sylan9eq 2878 . . . . . . . . . . . 12 (((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) ∧ 𝑤𝐴) → (𝑥𝑤) = if(𝑤𝑦, 1o, ∅))
3433eqeq1d 2825 . . . . . . . . . . 11 (((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) ∧ 𝑤𝐴) → ((𝑥𝑤) = 1o ↔ if(𝑤𝑦, 1o, ∅) = 1o))
35 iftrue 4475 . . . . . . . . . . . 12 (𝑤𝑦 → if(𝑤𝑦, 1o, ∅) = 1o)
36 noel 4298 . . . . . . . . . . . . . 14 ¬ ∅ ∈ ∅
37 iffalse 4478 . . . . . . . . . . . . . . . 16 𝑤𝑦 → if(𝑤𝑦, 1o, ∅) = ∅)
3837eqeq1d 2825 . . . . . . . . . . . . . . 15 𝑤𝑦 → (if(𝑤𝑦, 1o, ∅) = 1o ↔ ∅ = 1o))
39 0lt1o 8131 . . . . . . . . . . . . . . . 16 ∅ ∈ 1o
40 eleq2 2903 . . . . . . . . . . . . . . . 16 (∅ = 1o → (∅ ∈ ∅ ↔ ∅ ∈ 1o))
4139, 40mpbiri 260 . . . . . . . . . . . . . . 15 (∅ = 1o → ∅ ∈ ∅)
4238, 41syl6bi 255 . . . . . . . . . . . . . 14 𝑤𝑦 → (if(𝑤𝑦, 1o, ∅) = 1o → ∅ ∈ ∅))
4336, 42mtoi 201 . . . . . . . . . . . . 13 𝑤𝑦 → ¬ if(𝑤𝑦, 1o, ∅) = 1o)
4443con4i 114 . . . . . . . . . . . 12 (if(𝑤𝑦, 1o, ∅) = 1o𝑤𝑦)
4535, 44impbii 211 . . . . . . . . . . 11 (𝑤𝑦 ↔ if(𝑤𝑦, 1o, ∅) = 1o)
4634, 45syl6rbbr 292 . . . . . . . . . 10 (((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) ∧ 𝑤𝐴) → (𝑤𝑦 ↔ (𝑥𝑤) = 1o))
47 fvex 6685 . . . . . . . . . . 11 (𝑥𝑤) ∈ V
4847elsn 4584 . . . . . . . . . 10 ((𝑥𝑤) ∈ {1o} ↔ (𝑥𝑤) = 1o)
4946, 48syl6bbr 291 . . . . . . . . 9 (((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) ∧ 𝑤𝐴) → (𝑤𝑦 ↔ (𝑥𝑤) ∈ {1o}))
5049pm5.32da 581 . . . . . . . 8 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) → ((𝑤𝐴𝑤𝑦) ↔ (𝑤𝐴 ∧ (𝑥𝑤) ∈ {1o})))
51 ssel 3963 . . . . . . . . . 10 (𝑦𝐴 → (𝑤𝑦𝑤𝐴))
5251adantr 483 . . . . . . . . 9 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) → (𝑤𝑦𝑤𝐴))
5352pm4.71rd 565 . . . . . . . 8 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) → (𝑤𝑦 ↔ (𝑤𝐴𝑤𝑦)))
54 ffn 6516 . . . . . . . . 9 (𝑥:𝐴⟶2o𝑥 Fn 𝐴)
55 elpreima 6830 . . . . . . . . 9 (𝑥 Fn 𝐴 → (𝑤 ∈ (𝑥 “ {1o}) ↔ (𝑤𝐴 ∧ (𝑥𝑤) ∈ {1o})))
5627, 54, 553syl 18 . . . . . . . 8 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) → (𝑤 ∈ (𝑥 “ {1o}) ↔ (𝑤𝐴 ∧ (𝑥𝑤) ∈ {1o})))
5750, 53, 563bitr4d 313 . . . . . . 7 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) → (𝑤𝑦𝑤 ∈ (𝑥 “ {1o})))
5857eqrdv 2821 . . . . . 6 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) → 𝑦 = (𝑥 “ {1o}))
5927, 58jca 514 . . . . 5 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) → (𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})))
60 simpr 487 . . . . . . 7 ((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) → 𝑦 = (𝑥 “ {1o}))
61 cnvimass 5951 . . . . . . . 8 (𝑥 “ {1o}) ⊆ dom 𝑥
62 fdm 6524 . . . . . . . . 9 (𝑥:𝐴⟶2o → dom 𝑥 = 𝐴)
6362adantr 483 . . . . . . . 8 ((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) → dom 𝑥 = 𝐴)
6461, 63sseqtrid 4021 . . . . . . 7 ((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) → (𝑥 “ {1o}) ⊆ 𝐴)
6560, 64eqsstrd 4007 . . . . . 6 ((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) → 𝑦𝐴)
66 simplr 767 . . . . . . . . . . . . . 14 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → 𝑦 = (𝑥 “ {1o}))
6766eleq2d 2900 . . . . . . . . . . . . 13 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → (𝑤𝑦𝑤 ∈ (𝑥 “ {1o})))
6854adantr 483 . . . . . . . . . . . . . . 15 ((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) → 𝑥 Fn 𝐴)
69 fnbrfvb 6720 . . . . . . . . . . . . . . 15 ((𝑥 Fn 𝐴𝑤𝐴) → ((𝑥𝑤) = 1o𝑤𝑥1o))
7068, 69sylan 582 . . . . . . . . . . . . . 14 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → ((𝑥𝑤) = 1o𝑤𝑥1o))
71 1on 8111 . . . . . . . . . . . . . . 15 1o ∈ On
72 vex 3499 . . . . . . . . . . . . . . . 16 𝑤 ∈ V
7372eliniseg 5960 . . . . . . . . . . . . . . 15 (1o ∈ On → (𝑤 ∈ (𝑥 “ {1o}) ↔ 𝑤𝑥1o))
7471, 73ax-mp 5 . . . . . . . . . . . . . 14 (𝑤 ∈ (𝑥 “ {1o}) ↔ 𝑤𝑥1o)
7570, 74syl6bbr 291 . . . . . . . . . . . . 13 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → ((𝑥𝑤) = 1o𝑤 ∈ (𝑥 “ {1o})))
7667, 75bitr4d 284 . . . . . . . . . . . 12 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → (𝑤𝑦 ↔ (𝑥𝑤) = 1o))
7776biimpa 479 . . . . . . . . . . 11 ((((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) ∧ 𝑤𝑦) → (𝑥𝑤) = 1o)
7835adantl 484 . . . . . . . . . . 11 ((((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) ∧ 𝑤𝑦) → if(𝑤𝑦, 1o, ∅) = 1o)
7977, 78eqtr4d 2861 . . . . . . . . . 10 ((((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) ∧ 𝑤𝑦) → (𝑥𝑤) = if(𝑤𝑦, 1o, ∅))
80 ffvelrn 6851 . . . . . . . . . . . . . . . . . 18 ((𝑥:𝐴⟶2o𝑤𝐴) → (𝑥𝑤) ∈ 2o)
8180adantlr 713 . . . . . . . . . . . . . . . . 17 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → (𝑥𝑤) ∈ 2o)
82 df2o3 8119 . . . . . . . . . . . . . . . . 17 2o = {∅, 1o}
8381, 82eleqtrdi 2925 . . . . . . . . . . . . . . . 16 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → (𝑥𝑤) ∈ {∅, 1o})
8447elpr 4592 . . . . . . . . . . . . . . . 16 ((𝑥𝑤) ∈ {∅, 1o} ↔ ((𝑥𝑤) = ∅ ∨ (𝑥𝑤) = 1o))
8583, 84sylib 220 . . . . . . . . . . . . . . 15 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → ((𝑥𝑤) = ∅ ∨ (𝑥𝑤) = 1o))
8685ord 860 . . . . . . . . . . . . . 14 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → (¬ (𝑥𝑤) = ∅ → (𝑥𝑤) = 1o))
8786, 76sylibrd 261 . . . . . . . . . . . . 13 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → (¬ (𝑥𝑤) = ∅ → 𝑤𝑦))
8887con1d 147 . . . . . . . . . . . 12 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → (¬ 𝑤𝑦 → (𝑥𝑤) = ∅))
8988imp 409 . . . . . . . . . . 11 ((((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) ∧ ¬ 𝑤𝑦) → (𝑥𝑤) = ∅)
9037adantl 484 . . . . . . . . . . 11 ((((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) ∧ ¬ 𝑤𝑦) → if(𝑤𝑦, 1o, ∅) = ∅)
9189, 90eqtr4d 2861 . . . . . . . . . 10 ((((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) ∧ ¬ 𝑤𝑦) → (𝑥𝑤) = if(𝑤𝑦, 1o, ∅))
9279, 91pm2.61dan 811 . . . . . . . . 9 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → (𝑥𝑤) = if(𝑤𝑦, 1o, ∅))
9332adantl 484 . . . . . . . . 9 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → ((𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))‘𝑤) = if(𝑤𝑦, 1o, ∅))
9492, 93eqtr4d 2861 . . . . . . . 8 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → (𝑥𝑤) = ((𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))‘𝑤))
9594ralrimiva 3184 . . . . . . 7 ((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) → ∀𝑤𝐴 (𝑥𝑤) = ((𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))‘𝑤))
96 ffn 6516 . . . . . . . . 9 ((𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)):𝐴⟶2o → (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)) Fn 𝐴)
9724, 96ax-mp 5 . . . . . . . 8 (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)) Fn 𝐴
98 eqfnfv 6804 . . . . . . . 8 ((𝑥 Fn 𝐴 ∧ (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)) Fn 𝐴) → (𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)) ↔ ∀𝑤𝐴 (𝑥𝑤) = ((𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))‘𝑤)))
9968, 97, 98sylancl 588 . . . . . . 7 ((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) → (𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)) ↔ ∀𝑤𝐴 (𝑥𝑤) = ((𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))‘𝑤)))
10095, 99mpbird 259 . . . . . 6 ((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) → 𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)))
10165, 100jca 514 . . . . 5 ((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) → (𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))))
10259, 101impbii 211 . . . 4 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) ↔ (𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})))
10311, 102syl6bbr 291 . . 3 (𝐴𝑉 → ((𝑥 ∈ (2om 𝐴) ∧ 𝑦 = (𝑥 “ {1o})) ↔ (𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)))))
104 velpw 4546 . . . 4 (𝑦 ∈ 𝒫 𝐴𝑦𝐴)
105104anbi1i 625 . . 3 ((𝑦 ∈ 𝒫 𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) ↔ (𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))))
106103, 105syl6bbr 291 . 2 (𝐴𝑉 → ((𝑥 ∈ (2om 𝐴) ∧ 𝑦 = (𝑥 “ {1o})) ↔ (𝑦 ∈ 𝒫 𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)))))
1071, 5, 7, 106f1ocnvd 7398 1 (𝐴𝑉 → (𝐹:(2om 𝐴)–1-1-onto→𝒫 𝐴𝐹 = (𝑦 ∈ 𝒫 𝐴 ↦ (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  wral 3140  Vcvv 3496  wss 3938  c0 4293  ifcif 4469  𝒫 cpw 4541  {csn 4569  {cpr 4571   class class class wbr 5068  cmpt 5148  ccnv 5556  dom cdm 5557  cima 5560  Oncon0 6193  suc csuc 6195   Fn wfn 6352  wf 6353  1-1-ontowf1o 6356  cfv 6357  (class class class)co 7158  1oc1o 8097  2oc2o 8098  m cmap 8408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-ord 6196  df-on 6197  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1o 8104  df-2o 8105  df-map 8410
This theorem is referenced by:  pw2f1o2  39642
  Copyright terms: Public domain W3C validator