MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwcdadom Structured version   Visualization version   GIF version

Theorem pwcdadom 8898
Description: A property of dominance over a powerset, and a main lemma for gchac 9359. Similar to Lemma 2.3 of [KanamoriPincus] p. 420. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
pwcdadom (𝒫 (𝐴 +𝑐 𝐴) ≼ (𝐴 +𝑐 𝐵) → 𝒫 𝐴𝐵)

Proof of Theorem pwcdadom
StepHypRef Expression
1 canthwdom 8344 . . . 4 ¬ 𝒫 𝐴* 𝐴
2 0elpw 4755 . . . . . . . . . . 11 ∅ ∈ 𝒫 (𝐴 +𝑐 𝐴)
32n0ii 3880 . . . . . . . . . 10 ¬ 𝒫 (𝐴 +𝑐 𝐴) = ∅
4 dom0 7950 . . . . . . . . . 10 (𝒫 (𝐴 +𝑐 𝐴) ≼ ∅ ↔ 𝒫 (𝐴 +𝑐 𝐴) = ∅)
53, 4mtbir 311 . . . . . . . . 9 ¬ 𝒫 (𝐴 +𝑐 𝐴) ≼ ∅
6 cdafn 8851 . . . . . . . . . . . 12 +𝑐 Fn (V × V)
7 fndm 5890 . . . . . . . . . . . 12 ( +𝑐 Fn (V × V) → dom +𝑐 = (V × V))
86, 7ax-mp 5 . . . . . . . . . . 11 dom +𝑐 = (V × V)
98ndmov 6693 . . . . . . . . . 10 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 +𝑐 𝐵) = ∅)
109breq2d 4589 . . . . . . . . 9 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝒫 (𝐴 +𝑐 𝐴) ≼ (𝐴 +𝑐 𝐵) ↔ 𝒫 (𝐴 +𝑐 𝐴) ≼ ∅))
115, 10mtbiri 315 . . . . . . . 8 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ¬ 𝒫 (𝐴 +𝑐 𝐴) ≼ (𝐴 +𝑐 𝐵))
1211con4i 111 . . . . . . 7 (𝒫 (𝐴 +𝑐 𝐴) ≼ (𝐴 +𝑐 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
1312simpld 473 . . . . . 6 (𝒫 (𝐴 +𝑐 𝐴) ≼ (𝐴 +𝑐 𝐵) → 𝐴 ∈ V)
14 0ex 4713 . . . . . 6 ∅ ∈ V
15 xpsneng 7907 . . . . . 6 ((𝐴 ∈ V ∧ ∅ ∈ V) → (𝐴 × {∅}) ≈ 𝐴)
1613, 14, 15sylancl 692 . . . . 5 (𝒫 (𝐴 +𝑐 𝐴) ≼ (𝐴 +𝑐 𝐵) → (𝐴 × {∅}) ≈ 𝐴)
17 endom 7845 . . . . 5 ((𝐴 × {∅}) ≈ 𝐴 → (𝐴 × {∅}) ≼ 𝐴)
18 domwdom 8339 . . . . 5 ((𝐴 × {∅}) ≼ 𝐴 → (𝐴 × {∅}) ≼* 𝐴)
19 wdomtr 8340 . . . . . 6 ((𝒫 𝐴* (𝐴 × {∅}) ∧ (𝐴 × {∅}) ≼* 𝐴) → 𝒫 𝐴* 𝐴)
2019expcom 449 . . . . 5 ((𝐴 × {∅}) ≼* 𝐴 → (𝒫 𝐴* (𝐴 × {∅}) → 𝒫 𝐴* 𝐴))
2116, 17, 18, 204syl 19 . . . 4 (𝒫 (𝐴 +𝑐 𝐴) ≼ (𝐴 +𝑐 𝐵) → (𝒫 𝐴* (𝐴 × {∅}) → 𝒫 𝐴* 𝐴))
221, 21mtoi 188 . . 3 (𝒫 (𝐴 +𝑐 𝐴) ≼ (𝐴 +𝑐 𝐵) → ¬ 𝒫 𝐴* (𝐴 × {∅}))
23 pwcdaen 8867 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝐴 ∈ V) → 𝒫 (𝐴 +𝑐 𝐴) ≈ (𝒫 𝐴 × 𝒫 𝐴))
2413, 13, 23syl2anc 690 . . . . . . . 8 (𝒫 (𝐴 +𝑐 𝐴) ≼ (𝐴 +𝑐 𝐵) → 𝒫 (𝐴 +𝑐 𝐴) ≈ (𝒫 𝐴 × 𝒫 𝐴))
25 domen1 7964 . . . . . . . 8 (𝒫 (𝐴 +𝑐 𝐴) ≈ (𝒫 𝐴 × 𝒫 𝐴) → (𝒫 (𝐴 +𝑐 𝐴) ≼ (𝐴 +𝑐 𝐵) ↔ (𝒫 𝐴 × 𝒫 𝐴) ≼ (𝐴 +𝑐 𝐵)))
2624, 25syl 17 . . . . . . 7 (𝒫 (𝐴 +𝑐 𝐴) ≼ (𝐴 +𝑐 𝐵) → (𝒫 (𝐴 +𝑐 𝐴) ≼ (𝐴 +𝑐 𝐵) ↔ (𝒫 𝐴 × 𝒫 𝐴) ≼ (𝐴 +𝑐 𝐵)))
2726ibi 254 . . . . . 6 (𝒫 (𝐴 +𝑐 𝐴) ≼ (𝐴 +𝑐 𝐵) → (𝒫 𝐴 × 𝒫 𝐴) ≼ (𝐴 +𝑐 𝐵))
28 cdaval 8852 . . . . . . 7 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 +𝑐 𝐵) = ((𝐴 × {∅}) ∪ (𝐵 × {1𝑜})))
2912, 28syl 17 . . . . . 6 (𝒫 (𝐴 +𝑐 𝐴) ≼ (𝐴 +𝑐 𝐵) → (𝐴 +𝑐 𝐵) = ((𝐴 × {∅}) ∪ (𝐵 × {1𝑜})))
3027, 29breqtrd 4603 . . . . 5 (𝒫 (𝐴 +𝑐 𝐴) ≼ (𝐴 +𝑐 𝐵) → (𝒫 𝐴 × 𝒫 𝐴) ≼ ((𝐴 × {∅}) ∪ (𝐵 × {1𝑜})))
31 unxpwdom 8354 . . . . 5 ((𝒫 𝐴 × 𝒫 𝐴) ≼ ((𝐴 × {∅}) ∪ (𝐵 × {1𝑜})) → (𝒫 𝐴* (𝐴 × {∅}) ∨ 𝒫 𝐴 ≼ (𝐵 × {1𝑜})))
3230, 31syl 17 . . . 4 (𝒫 (𝐴 +𝑐 𝐴) ≼ (𝐴 +𝑐 𝐵) → (𝒫 𝐴* (𝐴 × {∅}) ∨ 𝒫 𝐴 ≼ (𝐵 × {1𝑜})))
3332ord 390 . . 3 (𝒫 (𝐴 +𝑐 𝐴) ≼ (𝐴 +𝑐 𝐵) → (¬ 𝒫 𝐴* (𝐴 × {∅}) → 𝒫 𝐴 ≼ (𝐵 × {1𝑜})))
3422, 33mpd 15 . 2 (𝒫 (𝐴 +𝑐 𝐴) ≼ (𝐴 +𝑐 𝐵) → 𝒫 𝐴 ≼ (𝐵 × {1𝑜}))
3512simprd 477 . . 3 (𝒫 (𝐴 +𝑐 𝐴) ≼ (𝐴 +𝑐 𝐵) → 𝐵 ∈ V)
36 1on 7431 . . 3 1𝑜 ∈ On
37 xpsneng 7907 . . 3 ((𝐵 ∈ V ∧ 1𝑜 ∈ On) → (𝐵 × {1𝑜}) ≈ 𝐵)
3835, 36, 37sylancl 692 . 2 (𝒫 (𝐴 +𝑐 𝐴) ≼ (𝐴 +𝑐 𝐵) → (𝐵 × {1𝑜}) ≈ 𝐵)
39 domentr 7878 . 2 ((𝒫 𝐴 ≼ (𝐵 × {1𝑜}) ∧ (𝐵 × {1𝑜}) ≈ 𝐵) → 𝒫 𝐴𝐵)
4034, 38, 39syl2anc 690 1 (𝒫 (𝐴 +𝑐 𝐴) ≼ (𝐴 +𝑐 𝐵) → 𝒫 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wo 381  wa 382   = wceq 1474  wcel 1976  Vcvv 3172  cun 3537  c0 3873  𝒫 cpw 4107  {csn 4124   class class class wbr 4577   × cxp 5026  dom cdm 5028  Oncon0 5626   Fn wfn 5785  (class class class)co 6527  1𝑜c1o 7417  cen 7815  cdom 7816  * cwdom 8322   +𝑐 ccda 8849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-ord 5629  df-on 5630  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-1st 7036  df-2nd 7037  df-1o 7424  df-2o 7425  df-er 7606  df-map 7723  df-en 7819  df-dom 7820  df-sdom 7821  df-wdom 8324  df-cda 8850
This theorem is referenced by:  gchdomtri  9307  gchpwdom  9348  gchhar  9357
  Copyright terms: Public domain W3C validator