MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwcfsdom Structured version   Visualization version   GIF version

Theorem pwcfsdom 9256
Description: A corollary of Konig's Theorem konigth 9242. Theorem 11.28 of [TakeutiZaring] p. 108. (Contributed by Mario Carneiro, 20-Mar-2013.)
Hypothesis
Ref Expression
pwcfsdom.1 𝐻 = (𝑦 ∈ (cf‘(ℵ‘𝐴)) ↦ (har‘(𝑓𝑦)))
Assertion
Ref Expression
pwcfsdom (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑𝑚 (cf‘(ℵ‘𝐴)))
Distinct variable group:   𝐴,𝑓,𝑦
Allowed substitution hints:   𝐻(𝑦,𝑓)

Proof of Theorem pwcfsdom
Dummy variables 𝑤 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onzsl 6910 . . . 4 (𝐴 ∈ On ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴)))
21biimpi 204 . . 3 (𝐴 ∈ On → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴)))
3 cfom 8941 . . . . . . 7 (cf‘ω) = ω
4 aleph0 8744 . . . . . . . 8 (ℵ‘∅) = ω
54fveq2i 6086 . . . . . . 7 (cf‘(ℵ‘∅)) = (cf‘ω)
63, 5, 43eqtr4i 2636 . . . . . 6 (cf‘(ℵ‘∅)) = (ℵ‘∅)
7 fveq2 6083 . . . . . . 7 (𝐴 = ∅ → (ℵ‘𝐴) = (ℵ‘∅))
87fveq2d 6087 . . . . . 6 (𝐴 = ∅ → (cf‘(ℵ‘𝐴)) = (cf‘(ℵ‘∅)))
96, 8, 73eqtr4a 2664 . . . . 5 (𝐴 = ∅ → (cf‘(ℵ‘𝐴)) = (ℵ‘𝐴))
10 fvex 6093 . . . . . . . . 9 (ℵ‘𝐴) ∈ V
1110canth2 7970 . . . . . . . 8 (ℵ‘𝐴) ≺ 𝒫 (ℵ‘𝐴)
1210pw2en 7924 . . . . . . . 8 𝒫 (ℵ‘𝐴) ≈ (2𝑜𝑚 (ℵ‘𝐴))
13 sdomentr 7951 . . . . . . . 8 (((ℵ‘𝐴) ≺ 𝒫 (ℵ‘𝐴) ∧ 𝒫 (ℵ‘𝐴) ≈ (2𝑜𝑚 (ℵ‘𝐴))) → (ℵ‘𝐴) ≺ (2𝑜𝑚 (ℵ‘𝐴)))
1411, 12, 13mp2an 703 . . . . . . 7 (ℵ‘𝐴) ≺ (2𝑜𝑚 (ℵ‘𝐴))
15 alephon 8747 . . . . . . . . 9 (ℵ‘𝐴) ∈ On
16 alephgeom 8760 . . . . . . . . . 10 (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴))
17 omelon 8398 . . . . . . . . . . . 12 ω ∈ On
18 2onn 7579 . . . . . . . . . . . 12 2𝑜 ∈ ω
19 onelss 5664 . . . . . . . . . . . 12 (ω ∈ On → (2𝑜 ∈ ω → 2𝑜 ⊆ ω))
2017, 18, 19mp2 9 . . . . . . . . . . 11 2𝑜 ⊆ ω
21 sstr 3570 . . . . . . . . . . 11 ((2𝑜 ⊆ ω ∧ ω ⊆ (ℵ‘𝐴)) → 2𝑜 ⊆ (ℵ‘𝐴))
2220, 21mpan 701 . . . . . . . . . 10 (ω ⊆ (ℵ‘𝐴) → 2𝑜 ⊆ (ℵ‘𝐴))
2316, 22sylbi 205 . . . . . . . . 9 (𝐴 ∈ On → 2𝑜 ⊆ (ℵ‘𝐴))
24 ssdomg 7859 . . . . . . . . 9 ((ℵ‘𝐴) ∈ On → (2𝑜 ⊆ (ℵ‘𝐴) → 2𝑜 ≼ (ℵ‘𝐴)))
2515, 23, 24mpsyl 65 . . . . . . . 8 (𝐴 ∈ On → 2𝑜 ≼ (ℵ‘𝐴))
26 mapdom1 7982 . . . . . . . 8 (2𝑜 ≼ (ℵ‘𝐴) → (2𝑜𝑚 (ℵ‘𝐴)) ≼ ((ℵ‘𝐴) ↑𝑚 (ℵ‘𝐴)))
2725, 26syl 17 . . . . . . 7 (𝐴 ∈ On → (2𝑜𝑚 (ℵ‘𝐴)) ≼ ((ℵ‘𝐴) ↑𝑚 (ℵ‘𝐴)))
28 sdomdomtr 7950 . . . . . . 7 (((ℵ‘𝐴) ≺ (2𝑜𝑚 (ℵ‘𝐴)) ∧ (2𝑜𝑚 (ℵ‘𝐴)) ≼ ((ℵ‘𝐴) ↑𝑚 (ℵ‘𝐴))) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑𝑚 (ℵ‘𝐴)))
2914, 27, 28sylancr 693 . . . . . 6 (𝐴 ∈ On → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑𝑚 (ℵ‘𝐴)))
30 oveq2 6530 . . . . . . 7 ((cf‘(ℵ‘𝐴)) = (ℵ‘𝐴) → ((ℵ‘𝐴) ↑𝑚 (cf‘(ℵ‘𝐴))) = ((ℵ‘𝐴) ↑𝑚 (ℵ‘𝐴)))
3130breq2d 4584 . . . . . 6 ((cf‘(ℵ‘𝐴)) = (ℵ‘𝐴) → ((ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑𝑚 (cf‘(ℵ‘𝐴))) ↔ (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑𝑚 (ℵ‘𝐴))))
3229, 31syl5ibrcom 235 . . . . 5 (𝐴 ∈ On → ((cf‘(ℵ‘𝐴)) = (ℵ‘𝐴) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑𝑚 (cf‘(ℵ‘𝐴)))))
339, 32syl5 33 . . . 4 (𝐴 ∈ On → (𝐴 = ∅ → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑𝑚 (cf‘(ℵ‘𝐴)))))
34 alephreg 9255 . . . . . . 7 (cf‘(ℵ‘suc 𝑥)) = (ℵ‘suc 𝑥)
35 fveq2 6083 . . . . . . . 8 (𝐴 = suc 𝑥 → (ℵ‘𝐴) = (ℵ‘suc 𝑥))
3635fveq2d 6087 . . . . . . 7 (𝐴 = suc 𝑥 → (cf‘(ℵ‘𝐴)) = (cf‘(ℵ‘suc 𝑥)))
3734, 36, 353eqtr4a 2664 . . . . . 6 (𝐴 = suc 𝑥 → (cf‘(ℵ‘𝐴)) = (ℵ‘𝐴))
3837rexlimivw 3005 . . . . 5 (∃𝑥 ∈ On 𝐴 = suc 𝑥 → (cf‘(ℵ‘𝐴)) = (ℵ‘𝐴))
3938, 32syl5 33 . . . 4 (𝐴 ∈ On → (∃𝑥 ∈ On 𝐴 = suc 𝑥 → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑𝑚 (cf‘(ℵ‘𝐴)))))
40 cfsmo 8948 . . . . . 6 ((ℵ‘𝐴) ∈ On → ∃𝑓(𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤)))
41 limelon 5686 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ Lim 𝐴) → 𝐴 ∈ On)
42 ffn 5939 . . . . . . . . . . . . . . . 16 (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → 𝑓 Fn (cf‘(ℵ‘𝐴)))
43 fnrnfv 6132 . . . . . . . . . . . . . . . . 17 (𝑓 Fn (cf‘(ℵ‘𝐴)) → ran 𝑓 = {𝑦 ∣ ∃𝑥 ∈ (cf‘(ℵ‘𝐴))𝑦 = (𝑓𝑥)})
4443unieqd 4371 . . . . . . . . . . . . . . . 16 (𝑓 Fn (cf‘(ℵ‘𝐴)) → ran 𝑓 = {𝑦 ∣ ∃𝑥 ∈ (cf‘(ℵ‘𝐴))𝑦 = (𝑓𝑥)})
4542, 44syl 17 . . . . . . . . . . . . . . 15 (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → ran 𝑓 = {𝑦 ∣ ∃𝑥 ∈ (cf‘(ℵ‘𝐴))𝑦 = (𝑓𝑥)})
46 fvex 6093 . . . . . . . . . . . . . . . 16 (𝑓𝑥) ∈ V
4746dfiun2 4479 . . . . . . . . . . . . . . 15 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓𝑥) = {𝑦 ∣ ∃𝑥 ∈ (cf‘(ℵ‘𝐴))𝑦 = (𝑓𝑥)}
4845, 47syl6eqr 2656 . . . . . . . . . . . . . 14 (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → ran 𝑓 = 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓𝑥))
4948ad2antrl 759 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤))) → ran 𝑓 = 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓𝑥))
50 fnfvelrn 6244 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓 Fn (cf‘(ℵ‘𝐴)) ∧ 𝑤 ∈ (cf‘(ℵ‘𝐴))) → (𝑓𝑤) ∈ ran 𝑓)
5142, 50sylan 486 . . . . . . . . . . . . . . . . . . . 20 ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑤 ∈ (cf‘(ℵ‘𝐴))) → (𝑓𝑤) ∈ ran 𝑓)
52 sseq2 3584 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (𝑓𝑤) → (𝑧𝑦𝑧 ⊆ (𝑓𝑤)))
5352rspcev 3276 . . . . . . . . . . . . . . . . . . . 20 (((𝑓𝑤) ∈ ran 𝑓𝑧 ⊆ (𝑓𝑤)) → ∃𝑦 ∈ ran 𝑓 𝑧𝑦)
5451, 53sylan 486 . . . . . . . . . . . . . . . . . . 19 (((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑤 ∈ (cf‘(ℵ‘𝐴))) ∧ 𝑧 ⊆ (𝑓𝑤)) → ∃𝑦 ∈ ran 𝑓 𝑧𝑦)
5554ex 448 . . . . . . . . . . . . . . . . . 18 ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑤 ∈ (cf‘(ℵ‘𝐴))) → (𝑧 ⊆ (𝑓𝑤) → ∃𝑦 ∈ ran 𝑓 𝑧𝑦))
5655rexlimdva 3007 . . . . . . . . . . . . . . . . 17 (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → (∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤) → ∃𝑦 ∈ ran 𝑓 𝑧𝑦))
5756ralimdv 2940 . . . . . . . . . . . . . . . 16 (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → (∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤) → ∀𝑧 ∈ (ℵ‘𝐴)∃𝑦 ∈ ran 𝑓 𝑧𝑦))
5857imp 443 . . . . . . . . . . . . . . 15 ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤)) → ∀𝑧 ∈ (ℵ‘𝐴)∃𝑦 ∈ ran 𝑓 𝑧𝑦)
5958adantl 480 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤))) → ∀𝑧 ∈ (ℵ‘𝐴)∃𝑦 ∈ ran 𝑓 𝑧𝑦)
60 alephislim 8761 . . . . . . . . . . . . . . . 16 (𝐴 ∈ On ↔ Lim (ℵ‘𝐴))
6160biimpi 204 . . . . . . . . . . . . . . 15 (𝐴 ∈ On → Lim (ℵ‘𝐴))
62 frn 5947 . . . . . . . . . . . . . . . 16 (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → ran 𝑓 ⊆ (ℵ‘𝐴))
6362adantr 479 . . . . . . . . . . . . . . 15 ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤)) → ran 𝑓 ⊆ (ℵ‘𝐴))
64 coflim 8938 . . . . . . . . . . . . . . 15 ((Lim (ℵ‘𝐴) ∧ ran 𝑓 ⊆ (ℵ‘𝐴)) → ( ran 𝑓 = (ℵ‘𝐴) ↔ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑦 ∈ ran 𝑓 𝑧𝑦))
6561, 63, 64syl2an 492 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤))) → ( ran 𝑓 = (ℵ‘𝐴) ↔ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑦 ∈ ran 𝑓 𝑧𝑦))
6659, 65mpbird 245 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤))) → ran 𝑓 = (ℵ‘𝐴))
6749, 66eqtr3d 2640 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤))) → 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓𝑥) = (ℵ‘𝐴))
68 ffvelrn 6245 . . . . . . . . . . . . . . . . 17 ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → (𝑓𝑥) ∈ (ℵ‘𝐴))
6915oneli 5733 . . . . . . . . . . . . . . . . 17 ((𝑓𝑥) ∈ (ℵ‘𝐴) → (𝑓𝑥) ∈ On)
70 harcard 8659 . . . . . . . . . . . . . . . . . . 19 (card‘(har‘(𝑓𝑥))) = (har‘(𝑓𝑥))
71 iscard 8656 . . . . . . . . . . . . . . . . . . . 20 ((card‘(har‘(𝑓𝑥))) = (har‘(𝑓𝑥)) ↔ ((har‘(𝑓𝑥)) ∈ On ∧ ∀𝑦 ∈ (har‘(𝑓𝑥))𝑦 ≺ (har‘(𝑓𝑥))))
7271simprbi 478 . . . . . . . . . . . . . . . . . . 19 ((card‘(har‘(𝑓𝑥))) = (har‘(𝑓𝑥)) → ∀𝑦 ∈ (har‘(𝑓𝑥))𝑦 ≺ (har‘(𝑓𝑥)))
7370, 72ax-mp 5 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ (har‘(𝑓𝑥))𝑦 ≺ (har‘(𝑓𝑥))
74 domrefg 7848 . . . . . . . . . . . . . . . . . . . 20 ((𝑓𝑥) ∈ V → (𝑓𝑥) ≼ (𝑓𝑥))
7546, 74ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (𝑓𝑥) ≼ (𝑓𝑥)
76 elharval 8323 . . . . . . . . . . . . . . . . . . . 20 ((𝑓𝑥) ∈ (har‘(𝑓𝑥)) ↔ ((𝑓𝑥) ∈ On ∧ (𝑓𝑥) ≼ (𝑓𝑥)))
7776biimpri 216 . . . . . . . . . . . . . . . . . . 19 (((𝑓𝑥) ∈ On ∧ (𝑓𝑥) ≼ (𝑓𝑥)) → (𝑓𝑥) ∈ (har‘(𝑓𝑥)))
7875, 77mpan2 702 . . . . . . . . . . . . . . . . . 18 ((𝑓𝑥) ∈ On → (𝑓𝑥) ∈ (har‘(𝑓𝑥)))
79 breq1 4575 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑓𝑥) → (𝑦 ≺ (har‘(𝑓𝑥)) ↔ (𝑓𝑥) ≺ (har‘(𝑓𝑥))))
8079rspccv 3273 . . . . . . . . . . . . . . . . . 18 (∀𝑦 ∈ (har‘(𝑓𝑥))𝑦 ≺ (har‘(𝑓𝑥)) → ((𝑓𝑥) ∈ (har‘(𝑓𝑥)) → (𝑓𝑥) ≺ (har‘(𝑓𝑥))))
8173, 78, 80mpsyl 65 . . . . . . . . . . . . . . . . 17 ((𝑓𝑥) ∈ On → (𝑓𝑥) ≺ (har‘(𝑓𝑥)))
8268, 69, 813syl 18 . . . . . . . . . . . . . . . 16 ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → (𝑓𝑥) ≺ (har‘(𝑓𝑥)))
83 harcl 8321 . . . . . . . . . . . . . . . . . . 19 (har‘(𝑓𝑥)) ∈ On
84 fveq2 6083 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑥 → (𝑓𝑦) = (𝑓𝑥))
8584fveq2d 6087 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑥 → (har‘(𝑓𝑦)) = (har‘(𝑓𝑥)))
86 pwcfsdom.1 . . . . . . . . . . . . . . . . . . . 20 𝐻 = (𝑦 ∈ (cf‘(ℵ‘𝐴)) ↦ (har‘(𝑓𝑦)))
8785, 86fvmptg 6169 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (cf‘(ℵ‘𝐴)) ∧ (har‘(𝑓𝑥)) ∈ On) → (𝐻𝑥) = (har‘(𝑓𝑥)))
8883, 87mpan2 702 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (cf‘(ℵ‘𝐴)) → (𝐻𝑥) = (har‘(𝑓𝑥)))
8988breq2d 4584 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (cf‘(ℵ‘𝐴)) → ((𝑓𝑥) ≺ (𝐻𝑥) ↔ (𝑓𝑥) ≺ (har‘(𝑓𝑥))))
9089adantl 480 . . . . . . . . . . . . . . . 16 ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → ((𝑓𝑥) ≺ (𝐻𝑥) ↔ (𝑓𝑥) ≺ (har‘(𝑓𝑥))))
9182, 90mpbird 245 . . . . . . . . . . . . . . 15 ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → (𝑓𝑥) ≺ (𝐻𝑥))
9291ralrimiva 2943 . . . . . . . . . . . . . 14 (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → ∀𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓𝑥) ≺ (𝐻𝑥))
93 fvex 6093 . . . . . . . . . . . . . . 15 (cf‘(ℵ‘𝐴)) ∈ V
94 eqid 2604 . . . . . . . . . . . . . . 15 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓𝑥) = 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓𝑥)
95 eqid 2604 . . . . . . . . . . . . . . 15 X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) = X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥)
9693, 94, 95konigth 9242 . . . . . . . . . . . . . 14 (∀𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓𝑥) ≺ (𝐻𝑥) → 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓𝑥) ≺ X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥))
9792, 96syl 17 . . . . . . . . . . . . 13 (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓𝑥) ≺ X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥))
9897ad2antrl 759 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤))) → 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓𝑥) ≺ X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥))
9967, 98eqbrtrrd 4596 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤))) → (ℵ‘𝐴) ≺ X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥))
10041, 99sylan 486 . . . . . . . . . 10 (((𝐴 ∈ V ∧ Lim 𝐴) ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤))) → (ℵ‘𝐴) ≺ X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥))
101 ovex 6550 . . . . . . . . . . . 12 ((ℵ‘𝐴) ↑𝑚 (cf‘(ℵ‘𝐴))) ∈ V
10268ex 448 . . . . . . . . . . . . . . . 16 (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → (𝑥 ∈ (cf‘(ℵ‘𝐴)) → (𝑓𝑥) ∈ (ℵ‘𝐴)))
103 alephlim 8745 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ‘𝐴) = 𝑦𝐴 (ℵ‘𝑦))
104103eleq2d 2667 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ V ∧ Lim 𝐴) → ((𝑓𝑥) ∈ (ℵ‘𝐴) ↔ (𝑓𝑥) ∈ 𝑦𝐴 (ℵ‘𝑦)))
105 eliun 4449 . . . . . . . . . . . . . . . . . . 19 ((𝑓𝑥) ∈ 𝑦𝐴 (ℵ‘𝑦) ↔ ∃𝑦𝐴 (𝑓𝑥) ∈ (ℵ‘𝑦))
106 alephcard 8748 . . . . . . . . . . . . . . . . . . . . . . . . 25 (card‘(ℵ‘𝑦)) = (ℵ‘𝑦)
107106eleq2i 2674 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓𝑥) ∈ (card‘(ℵ‘𝑦)) ↔ (𝑓𝑥) ∈ (ℵ‘𝑦))
108 cardsdomelir 8654 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓𝑥) ∈ (card‘(ℵ‘𝑦)) → (𝑓𝑥) ≺ (ℵ‘𝑦))
109107, 108sylbir 223 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓𝑥) ∈ (ℵ‘𝑦) → (𝑓𝑥) ≺ (ℵ‘𝑦))
110 elharval 8323 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((ℵ‘𝑦) ∈ (har‘(𝑓𝑥)) ↔ ((ℵ‘𝑦) ∈ On ∧ (ℵ‘𝑦) ≼ (𝑓𝑥)))
111110simprbi 478 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((ℵ‘𝑦) ∈ (har‘(𝑓𝑥)) → (ℵ‘𝑦) ≼ (𝑓𝑥))
112 domnsym 7943 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((ℵ‘𝑦) ≼ (𝑓𝑥) → ¬ (𝑓𝑥) ≺ (ℵ‘𝑦))
113111, 112syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((ℵ‘𝑦) ∈ (har‘(𝑓𝑥)) → ¬ (𝑓𝑥) ≺ (ℵ‘𝑦))
114113con2i 132 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓𝑥) ≺ (ℵ‘𝑦) → ¬ (ℵ‘𝑦) ∈ (har‘(𝑓𝑥)))
115 alephon 8747 . . . . . . . . . . . . . . . . . . . . . . . . 25 (ℵ‘𝑦) ∈ On
116 ontri1 5655 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((har‘(𝑓𝑥)) ∈ On ∧ (ℵ‘𝑦) ∈ On) → ((har‘(𝑓𝑥)) ⊆ (ℵ‘𝑦) ↔ ¬ (ℵ‘𝑦) ∈ (har‘(𝑓𝑥))))
11783, 115, 116mp2an 703 . . . . . . . . . . . . . . . . . . . . . . . 24 ((har‘(𝑓𝑥)) ⊆ (ℵ‘𝑦) ↔ ¬ (ℵ‘𝑦) ∈ (har‘(𝑓𝑥)))
118114, 117sylibr 222 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓𝑥) ≺ (ℵ‘𝑦) → (har‘(𝑓𝑥)) ⊆ (ℵ‘𝑦))
119109, 118syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓𝑥) ∈ (ℵ‘𝑦) → (har‘(𝑓𝑥)) ⊆ (ℵ‘𝑦))
120 alephord2i 8755 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 ∈ On → (𝑦𝐴 → (ℵ‘𝑦) ∈ (ℵ‘𝐴)))
121120imp 443 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ On ∧ 𝑦𝐴) → (ℵ‘𝑦) ∈ (ℵ‘𝐴))
122 ontr2 5670 . . . . . . . . . . . . . . . . . . . . . . 23 (((har‘(𝑓𝑥)) ∈ On ∧ (ℵ‘𝐴) ∈ On) → (((har‘(𝑓𝑥)) ⊆ (ℵ‘𝑦) ∧ (ℵ‘𝑦) ∈ (ℵ‘𝐴)) → (har‘(𝑓𝑥)) ∈ (ℵ‘𝐴)))
12383, 15, 122mp2an 703 . . . . . . . . . . . . . . . . . . . . . 22 (((har‘(𝑓𝑥)) ⊆ (ℵ‘𝑦) ∧ (ℵ‘𝑦) ∈ (ℵ‘𝐴)) → (har‘(𝑓𝑥)) ∈ (ℵ‘𝐴))
124119, 121, 123syl2anr 493 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ On ∧ 𝑦𝐴) ∧ (𝑓𝑥) ∈ (ℵ‘𝑦)) → (har‘(𝑓𝑥)) ∈ (ℵ‘𝐴))
125124exp31 627 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ On → (𝑦𝐴 → ((𝑓𝑥) ∈ (ℵ‘𝑦) → (har‘(𝑓𝑥)) ∈ (ℵ‘𝐴))))
126125rexlimdv 3006 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ On → (∃𝑦𝐴 (𝑓𝑥) ∈ (ℵ‘𝑦) → (har‘(𝑓𝑥)) ∈ (ℵ‘𝐴)))
127105, 126syl5bi 230 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ On → ((𝑓𝑥) ∈ 𝑦𝐴 (ℵ‘𝑦) → (har‘(𝑓𝑥)) ∈ (ℵ‘𝐴)))
12841, 127syl 17 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ V ∧ Lim 𝐴) → ((𝑓𝑥) ∈ 𝑦𝐴 (ℵ‘𝑦) → (har‘(𝑓𝑥)) ∈ (ℵ‘𝐴)))
129104, 128sylbid 228 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ V ∧ Lim 𝐴) → ((𝑓𝑥) ∈ (ℵ‘𝐴) → (har‘(𝑓𝑥)) ∈ (ℵ‘𝐴)))
130102, 129sylan9r 687 . . . . . . . . . . . . . . 15 (((𝐴 ∈ V ∧ Lim 𝐴) ∧ 𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴)) → (𝑥 ∈ (cf‘(ℵ‘𝐴)) → (har‘(𝑓𝑥)) ∈ (ℵ‘𝐴)))
131130imp 443 . . . . . . . . . . . . . 14 ((((𝐴 ∈ V ∧ Lim 𝐴) ∧ 𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴)) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → (har‘(𝑓𝑥)) ∈ (ℵ‘𝐴))
13285cbvmptv 4667 . . . . . . . . . . . . . . 15 (𝑦 ∈ (cf‘(ℵ‘𝐴)) ↦ (har‘(𝑓𝑦))) = (𝑥 ∈ (cf‘(ℵ‘𝐴)) ↦ (har‘(𝑓𝑥)))
13386, 132eqtri 2626 . . . . . . . . . . . . . 14 𝐻 = (𝑥 ∈ (cf‘(ℵ‘𝐴)) ↦ (har‘(𝑓𝑥)))
134131, 133fmptd 6272 . . . . . . . . . . . . 13 (((𝐴 ∈ V ∧ Lim 𝐴) ∧ 𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴)) → 𝐻:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴))
135 ffvelrn 6245 . . . . . . . . . . . . . . 15 ((𝐻:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → (𝐻𝑥) ∈ (ℵ‘𝐴))
136 onelss 5664 . . . . . . . . . . . . . . 15 ((ℵ‘𝐴) ∈ On → ((𝐻𝑥) ∈ (ℵ‘𝐴) → (𝐻𝑥) ⊆ (ℵ‘𝐴)))
13715, 135, 136mpsyl 65 . . . . . . . . . . . . . 14 ((𝐻:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → (𝐻𝑥) ⊆ (ℵ‘𝐴))
138137ralrimiva 2943 . . . . . . . . . . . . 13 (𝐻:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → ∀𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ⊆ (ℵ‘𝐴))
139 ss2ixp 7779 . . . . . . . . . . . . . 14 (∀𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ⊆ (ℵ‘𝐴) → X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ⊆ X𝑥 ∈ (cf‘(ℵ‘𝐴))(ℵ‘𝐴))
14093, 10ixpconst 7776 . . . . . . . . . . . . . 14 X𝑥 ∈ (cf‘(ℵ‘𝐴))(ℵ‘𝐴) = ((ℵ‘𝐴) ↑𝑚 (cf‘(ℵ‘𝐴)))
141139, 140syl6sseq 3608 . . . . . . . . . . . . 13 (∀𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ⊆ (ℵ‘𝐴) → X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ⊆ ((ℵ‘𝐴) ↑𝑚 (cf‘(ℵ‘𝐴))))
142134, 138, 1413syl 18 . . . . . . . . . . . 12 (((𝐴 ∈ V ∧ Lim 𝐴) ∧ 𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴)) → X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ⊆ ((ℵ‘𝐴) ↑𝑚 (cf‘(ℵ‘𝐴))))
143 ssdomg 7859 . . . . . . . . . . . 12 (((ℵ‘𝐴) ↑𝑚 (cf‘(ℵ‘𝐴))) ∈ V → (X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ⊆ ((ℵ‘𝐴) ↑𝑚 (cf‘(ℵ‘𝐴))) → X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ≼ ((ℵ‘𝐴) ↑𝑚 (cf‘(ℵ‘𝐴)))))
144101, 142, 143mpsyl 65 . . . . . . . . . . 11 (((𝐴 ∈ V ∧ Lim 𝐴) ∧ 𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴)) → X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ≼ ((ℵ‘𝐴) ↑𝑚 (cf‘(ℵ‘𝐴))))
145144adantrr 748 . . . . . . . . . 10 (((𝐴 ∈ V ∧ Lim 𝐴) ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤))) → X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ≼ ((ℵ‘𝐴) ↑𝑚 (cf‘(ℵ‘𝐴))))
146 sdomdomtr 7950 . . . . . . . . . 10 (((ℵ‘𝐴) ≺ X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ∧ X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ≼ ((ℵ‘𝐴) ↑𝑚 (cf‘(ℵ‘𝐴)))) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑𝑚 (cf‘(ℵ‘𝐴))))
147100, 145, 146syl2anc 690 . . . . . . . . 9 (((𝐴 ∈ V ∧ Lim 𝐴) ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤))) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑𝑚 (cf‘(ℵ‘𝐴))))
148147expcom 449 . . . . . . . 8 ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤)) → ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑𝑚 (cf‘(ℵ‘𝐴)))))
1491483adant2 1072 . . . . . . 7 ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤)) → ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑𝑚 (cf‘(ℵ‘𝐴)))))
150149exlimiv 1843 . . . . . 6 (∃𝑓(𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤)) → ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑𝑚 (cf‘(ℵ‘𝐴)))))
15115, 40, 150mp2b 10 . . . . 5 ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑𝑚 (cf‘(ℵ‘𝐴))))
152151a1i 11 . . . 4 (𝐴 ∈ On → ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑𝑚 (cf‘(ℵ‘𝐴)))))
15333, 39, 1523jaod 1383 . . 3 (𝐴 ∈ On → ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴)) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑𝑚 (cf‘(ℵ‘𝐴)))))
1542, 153mpd 15 . 2 (𝐴 ∈ On → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑𝑚 (cf‘(ℵ‘𝐴))))
155 alephfnon 8743 . . . . 5 ℵ Fn On
156 fndm 5885 . . . . 5 (ℵ Fn On → dom ℵ = On)
157155, 156ax-mp 5 . . . 4 dom ℵ = On
158157eleq2i 2674 . . 3 (𝐴 ∈ dom ℵ ↔ 𝐴 ∈ On)
159 ndmfv 6108 . . . 4 𝐴 ∈ dom ℵ → (ℵ‘𝐴) = ∅)
160 1n0 7434 . . . . . 6 1𝑜 ≠ ∅
161 1on 7426 . . . . . . . 8 1𝑜 ∈ On
162161elexi 3180 . . . . . . 7 1𝑜 ∈ V
1631620sdom 7948 . . . . . 6 (∅ ≺ 1𝑜 ↔ 1𝑜 ≠ ∅)
164160, 163mpbir 219 . . . . 5 ∅ ≺ 1𝑜
165 id 22 . . . . . 6 ((ℵ‘𝐴) = ∅ → (ℵ‘𝐴) = ∅)
166 fveq2 6083 . . . . . . . . 9 ((ℵ‘𝐴) = ∅ → (cf‘(ℵ‘𝐴)) = (cf‘∅))
167 cf0 8928 . . . . . . . . 9 (cf‘∅) = ∅
168166, 167syl6eq 2654 . . . . . . . 8 ((ℵ‘𝐴) = ∅ → (cf‘(ℵ‘𝐴)) = ∅)
169165, 168oveq12d 6540 . . . . . . 7 ((ℵ‘𝐴) = ∅ → ((ℵ‘𝐴) ↑𝑚 (cf‘(ℵ‘𝐴))) = (∅ ↑𝑚 ∅))
170 0ex 4708 . . . . . . . 8 ∅ ∈ V
171 map0e 7753 . . . . . . . 8 (∅ ∈ V → (∅ ↑𝑚 ∅) = 1𝑜)
172170, 171ax-mp 5 . . . . . . 7 (∅ ↑𝑚 ∅) = 1𝑜
173169, 172syl6eq 2654 . . . . . 6 ((ℵ‘𝐴) = ∅ → ((ℵ‘𝐴) ↑𝑚 (cf‘(ℵ‘𝐴))) = 1𝑜)
174165, 173breq12d 4585 . . . . 5 ((ℵ‘𝐴) = ∅ → ((ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑𝑚 (cf‘(ℵ‘𝐴))) ↔ ∅ ≺ 1𝑜))
175164, 174mpbiri 246 . . . 4 ((ℵ‘𝐴) = ∅ → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑𝑚 (cf‘(ℵ‘𝐴))))
176159, 175syl 17 . . 3 𝐴 ∈ dom ℵ → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑𝑚 (cf‘(ℵ‘𝐴))))
177158, 176sylnbir 319 . 2 𝐴 ∈ On → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑𝑚 (cf‘(ℵ‘𝐴))))
178154, 177pm2.61i 174 1 (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑𝑚 (cf‘(ℵ‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382  w3o 1029  w3a 1030   = wceq 1474  wex 1694  wcel 1975  {cab 2590  wne 2774  wral 2890  wrex 2891  Vcvv 3167  wss 3534  c0 3868  𝒫 cpw 4102   cuni 4361   ciun 4444   class class class wbr 4572  cmpt 4632  dom cdm 5023  ran crn 5024  Oncon0 5621  Lim wlim 5622  suc csuc 5623   Fn wfn 5780  wf 5781  cfv 5785  (class class class)co 6522  ωcom 6929  Smo wsmo 7301  1𝑜c1o 7412  2𝑜c2o 7413  𝑚 cmap 7716  Xcixp 7766  cen 7810  cdom 7811  csdm 7812  harchar 8316  cardccrd 8616  cale 8617  cfccf 8618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2227  ax-ext 2584  ax-rep 4688  ax-sep 4698  ax-nul 4707  ax-pow 4759  ax-pr 4823  ax-un 6819  ax-inf2 8393  ax-ac2 9140
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2456  df-mo 2457  df-clab 2591  df-cleq 2597  df-clel 2600  df-nfc 2734  df-ne 2776  df-ral 2895  df-rex 2896  df-reu 2897  df-rmo 2898  df-rab 2899  df-v 3169  df-sbc 3397  df-csb 3494  df-dif 3537  df-un 3539  df-in 3541  df-ss 3548  df-pss 3550  df-nul 3869  df-if 4031  df-pw 4104  df-sn 4120  df-pr 4122  df-tp 4124  df-op 4126  df-uni 4362  df-int 4400  df-iun 4446  df-iin 4447  df-br 4573  df-opab 4633  df-mpt 4634  df-tr 4670  df-eprel 4934  df-id 4938  df-po 4944  df-so 4945  df-fr 4982  df-se 4983  df-we 4984  df-xp 5029  df-rel 5030  df-cnv 5031  df-co 5032  df-dm 5033  df-rn 5034  df-res 5035  df-ima 5036  df-pred 5578  df-ord 5624  df-on 5625  df-lim 5626  df-suc 5627  df-iota 5749  df-fun 5787  df-fn 5788  df-f 5789  df-f1 5790  df-fo 5791  df-f1o 5792  df-fv 5793  df-isom 5794  df-riota 6484  df-ov 6525  df-oprab 6526  df-mpt2 6527  df-om 6930  df-1st 7031  df-2nd 7032  df-wrecs 7266  df-smo 7302  df-recs 7327  df-rdg 7365  df-1o 7419  df-2o 7420  df-oadd 7423  df-er 7601  df-map 7718  df-ixp 7767  df-en 7814  df-dom 7815  df-sdom 7816  df-fin 7817  df-oi 8270  df-har 8318  df-card 8620  df-aleph 8621  df-cf 8622  df-acn 8623  df-ac 8794
This theorem is referenced by:  cfpwsdom  9257  tskcard  9454  bj-pwcfsdom  32011
  Copyright terms: Public domain W3C validator