Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwm1geoserALT Structured version   Visualization version   GIF version

Theorem pwm1geoserALT 40827
 Description: The n-th power of a number decreased by 1 expressed by the finite geometric series 1 + 𝐴↑1 + 𝐴↑2 +... + 𝐴↑(𝑁 − 1). This alternate proof of pwm1geoser 14536 is not based on geoser 14535, but on pwdif 40826 and therefore shorter than the original proof. (Contributed by AV, 19-Aug-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
pwm1geoserALT.a (𝜑𝐴 ∈ ℂ)
pwm1geoserALT.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
pwm1geoserALT (𝜑 → ((𝐴𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁   𝜑,𝑘

Proof of Theorem pwm1geoserALT
StepHypRef Expression
1 pwm1geoserALT.n . . . . . 6 (𝜑𝑁 ∈ ℕ0)
21nn0zd 11432 . . . . 5 (𝜑𝑁 ∈ ℤ)
3 1exp 12837 . . . . 5 (𝑁 ∈ ℤ → (1↑𝑁) = 1)
42, 3syl 17 . . . 4 (𝜑 → (1↑𝑁) = 1)
54eqcomd 2627 . . 3 (𝜑 → 1 = (1↑𝑁))
65oveq2d 6626 . 2 (𝜑 → ((𝐴𝑁) − 1) = ((𝐴𝑁) − (1↑𝑁)))
7 pwm1geoserALT.a . . 3 (𝜑𝐴 ∈ ℂ)
8 1cnd 10008 . . 3 (𝜑 → 1 ∈ ℂ)
9 pwdif 40826 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴𝑁) − (1↑𝑁)) = ((𝐴 − 1) · Σ𝑘 ∈ (0..^𝑁)((𝐴𝑘) · (1↑((𝑁𝑘) − 1)))))
101, 7, 8, 9syl3anc 1323 . 2 (𝜑 → ((𝐴𝑁) − (1↑𝑁)) = ((𝐴 − 1) · Σ𝑘 ∈ (0..^𝑁)((𝐴𝑘) · (1↑((𝑁𝑘) − 1)))))
11 fzoval 12420 . . . . 5 (𝑁 ∈ ℤ → (0..^𝑁) = (0...(𝑁 − 1)))
122, 11syl 17 . . . 4 (𝜑 → (0..^𝑁) = (0...(𝑁 − 1)))
132adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑁 ∈ ℤ)
14 elfzoelz 12419 . . . . . . . . 9 (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ ℤ)
1514adantl 482 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ ℤ)
1613, 15zsubcld 11439 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑁𝑘) ∈ ℤ)
17 peano2zm 11372 . . . . . . 7 ((𝑁𝑘) ∈ ℤ → ((𝑁𝑘) − 1) ∈ ℤ)
18 1exp 12837 . . . . . . 7 (((𝑁𝑘) − 1) ∈ ℤ → (1↑((𝑁𝑘) − 1)) = 1)
1916, 17, 183syl 18 . . . . . 6 ((𝜑𝑘 ∈ (0..^𝑁)) → (1↑((𝑁𝑘) − 1)) = 1)
2019oveq2d 6626 . . . . 5 ((𝜑𝑘 ∈ (0..^𝑁)) → ((𝐴𝑘) · (1↑((𝑁𝑘) − 1))) = ((𝐴𝑘) · 1))
217adantr 481 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝐴 ∈ ℂ)
22 elfzonn0 12461 . . . . . . . 8 (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ ℕ0)
2322adantl 482 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ ℕ0)
2421, 23expcld 12956 . . . . . 6 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝐴𝑘) ∈ ℂ)
2524mulid1d 10009 . . . . 5 ((𝜑𝑘 ∈ (0..^𝑁)) → ((𝐴𝑘) · 1) = (𝐴𝑘))
2620, 25eqtrd 2655 . . . 4 ((𝜑𝑘 ∈ (0..^𝑁)) → ((𝐴𝑘) · (1↑((𝑁𝑘) − 1))) = (𝐴𝑘))
2712, 26sumeq12dv 14378 . . 3 (𝜑 → Σ𝑘 ∈ (0..^𝑁)((𝐴𝑘) · (1↑((𝑁𝑘) − 1))) = Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘))
2827oveq2d 6626 . 2 (𝜑 → ((𝐴 − 1) · Σ𝑘 ∈ (0..^𝑁)((𝐴𝑘) · (1↑((𝑁𝑘) − 1)))) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘)))
296, 10, 283eqtrd 2659 1 (𝜑 → ((𝐴𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1480   ∈ wcel 1987  (class class class)co 6610  ℂcc 9886  0cc0 9888  1c1 9889   · cmul 9893   − cmin 10218  ℕ0cn0 11244  ℤcz 11329  ...cfz 12276  ..^cfzo 12414  ↑cexp 12808  Σcsu 14358 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-sup 8300  df-oi 8367  df-card 8717  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-n0 11245  df-z 11330  df-uz 11640  df-rp 11785  df-fz 12277  df-fzo 12415  df-seq 12750  df-exp 12809  df-hash 13066  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-clim 14161  df-sum 14359 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator