![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwpr | Structured version Visualization version GIF version |
Description: The power set of an unordered pair. (Contributed by NM, 1-May-2009.) |
Ref | Expression |
---|---|
pwpr | ⊢ 𝒫 {𝐴, 𝐵} = ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspr 4511 | . . . 4 ⊢ (𝑥 ⊆ {𝐴, 𝐵} ↔ ((𝑥 = ∅ ∨ 𝑥 = {𝐴}) ∨ (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵}))) | |
2 | vex 3343 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | 2 | elpr 4343 | . . . . 5 ⊢ (𝑥 ∈ {∅, {𝐴}} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝐴})) |
4 | 2 | elpr 4343 | . . . . 5 ⊢ (𝑥 ∈ {{𝐵}, {𝐴, 𝐵}} ↔ (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵})) |
5 | 3, 4 | orbi12i 544 | . . . 4 ⊢ ((𝑥 ∈ {∅, {𝐴}} ∨ 𝑥 ∈ {{𝐵}, {𝐴, 𝐵}}) ↔ ((𝑥 = ∅ ∨ 𝑥 = {𝐴}) ∨ (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵}))) |
6 | 1, 5 | bitr4i 267 | . . 3 ⊢ (𝑥 ⊆ {𝐴, 𝐵} ↔ (𝑥 ∈ {∅, {𝐴}} ∨ 𝑥 ∈ {{𝐵}, {𝐴, 𝐵}})) |
7 | selpw 4309 | . . 3 ⊢ (𝑥 ∈ 𝒫 {𝐴, 𝐵} ↔ 𝑥 ⊆ {𝐴, 𝐵}) | |
8 | elun 3896 | . . 3 ⊢ (𝑥 ∈ ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) ↔ (𝑥 ∈ {∅, {𝐴}} ∨ 𝑥 ∈ {{𝐵}, {𝐴, 𝐵}})) | |
9 | 6, 7, 8 | 3bitr4i 292 | . 2 ⊢ (𝑥 ∈ 𝒫 {𝐴, 𝐵} ↔ 𝑥 ∈ ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}})) |
10 | 9 | eqriv 2757 | 1 ⊢ 𝒫 {𝐴, 𝐵} = ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 382 = wceq 1632 ∈ wcel 2139 ∪ cun 3713 ⊆ wss 3715 ∅c0 4058 𝒫 cpw 4302 {csn 4321 {cpr 4323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-pw 4304 df-sn 4322 df-pr 4324 |
This theorem is referenced by: pwpwpw0 4584 ord3ex 5005 hash2pwpr 13450 pr2pwpr 13453 prsiga 30503 prsal 41041 |
Copyright terms: Public domain | W3C validator |