![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pws1 | Structured version Visualization version GIF version |
Description: Value of the ring unit in a structure power. (Contributed by Mario Carneiro, 11-Mar-2015.) |
Ref | Expression |
---|---|
pws1.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
pws1.o | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
pws1 | ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (𝐼 × { 1 }) = (1r‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pws1.y | . . . 4 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
2 | eqid 2760 | . . . 4 ⊢ (Scalar‘𝑅) = (Scalar‘𝑅) | |
3 | 1, 2 | pwsval 16368 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
4 | 3 | fveq2d 6357 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (1r‘𝑌) = (1r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
5 | eqid 2760 | . . 3 ⊢ ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) | |
6 | simpr 479 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → 𝐼 ∈ 𝑉) | |
7 | fvexd 6365 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (Scalar‘𝑅) ∈ V) | |
8 | fconst6g 6255 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝐼 × {𝑅}):𝐼⟶Ring) | |
9 | 8 | adantr 472 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (𝐼 × {𝑅}):𝐼⟶Ring) |
10 | 5, 6, 7, 9 | prds1 18834 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (1r ∘ (𝐼 × {𝑅})) = (1r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
11 | fn0g 17483 | . . . . . . 7 ⊢ 0g Fn V | |
12 | 11 | a1i 11 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → 0g Fn V) |
13 | fnmgp 18711 | . . . . . . 7 ⊢ mulGrp Fn V | |
14 | 13 | a1i 11 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → mulGrp Fn V) |
15 | ssv 3766 | . . . . . . 7 ⊢ ran mulGrp ⊆ V | |
16 | 15 | a1i 11 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → ran mulGrp ⊆ V) |
17 | fnco 6160 | . . . . . 6 ⊢ ((0g Fn V ∧ mulGrp Fn V ∧ ran mulGrp ⊆ V) → (0g ∘ mulGrp) Fn V) | |
18 | 12, 14, 16, 17 | syl3anc 1477 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (0g ∘ mulGrp) Fn V) |
19 | df-ur 18722 | . . . . . 6 ⊢ 1r = (0g ∘ mulGrp) | |
20 | 19 | fneq1i 6146 | . . . . 5 ⊢ (1r Fn V ↔ (0g ∘ mulGrp) Fn V) |
21 | 18, 20 | sylibr 224 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → 1r Fn V) |
22 | elex 3352 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ V) | |
23 | 22 | adantr 472 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → 𝑅 ∈ V) |
24 | fcoconst 6565 | . . . 4 ⊢ ((1r Fn V ∧ 𝑅 ∈ V) → (1r ∘ (𝐼 × {𝑅})) = (𝐼 × {(1r‘𝑅)})) | |
25 | 21, 23, 24 | syl2anc 696 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (1r ∘ (𝐼 × {𝑅})) = (𝐼 × {(1r‘𝑅)})) |
26 | pws1.o | . . . . 5 ⊢ 1 = (1r‘𝑅) | |
27 | 26 | sneqi 4332 | . . . 4 ⊢ { 1 } = {(1r‘𝑅)} |
28 | 27 | xpeq2i 5293 | . . 3 ⊢ (𝐼 × { 1 }) = (𝐼 × {(1r‘𝑅)}) |
29 | 25, 28 | syl6eqr 2812 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (1r ∘ (𝐼 × {𝑅})) = (𝐼 × { 1 })) |
30 | 4, 10, 29 | 3eqtr2rd 2801 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (𝐼 × { 1 }) = (1r‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 Vcvv 3340 ⊆ wss 3715 {csn 4321 × cxp 5264 ran crn 5267 ∘ ccom 5270 Fn wfn 6044 ⟶wf 6045 ‘cfv 6049 (class class class)co 6814 Scalarcsca 16166 0gc0g 16322 Xscprds 16328 ↑s cpws 16329 mulGrpcmgp 18709 1rcur 18721 Ringcrg 18767 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-oadd 7734 df-er 7913 df-map 8027 df-ixp 8077 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-sup 8515 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-2 11291 df-3 11292 df-4 11293 df-5 11294 df-6 11295 df-7 11296 df-8 11297 df-9 11298 df-n0 11505 df-z 11590 df-dec 11706 df-uz 11900 df-fz 12540 df-struct 16081 df-ndx 16082 df-slot 16083 df-base 16085 df-sets 16086 df-plusg 16176 df-mulr 16177 df-sca 16179 df-vsca 16180 df-ip 16181 df-tset 16182 df-ple 16183 df-ds 16186 df-hom 16188 df-cco 16189 df-0g 16324 df-prds 16330 df-pws 16332 df-mgm 17463 df-sgrp 17505 df-mnd 17516 df-mgp 18710 df-ur 18722 df-ring 18769 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |