MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pws1 Structured version   Visualization version   GIF version

Theorem pws1 18836
Description: Value of the ring unit in a structure power. (Contributed by Mario Carneiro, 11-Mar-2015.)
Hypotheses
Ref Expression
pws1.y 𝑌 = (𝑅s 𝐼)
pws1.o 1 = (1r𝑅)
Assertion
Ref Expression
pws1 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (𝐼 × { 1 }) = (1r𝑌))

Proof of Theorem pws1
StepHypRef Expression
1 pws1.y . . . 4 𝑌 = (𝑅s 𝐼)
2 eqid 2760 . . . 4 (Scalar‘𝑅) = (Scalar‘𝑅)
31, 2pwsval 16368 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
43fveq2d 6357 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (1r𝑌) = (1r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
5 eqid 2760 . . 3 ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))
6 simpr 479 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝐼𝑉)
7 fvexd 6365 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (Scalar‘𝑅) ∈ V)
8 fconst6g 6255 . . . 4 (𝑅 ∈ Ring → (𝐼 × {𝑅}):𝐼⟶Ring)
98adantr 472 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (𝐼 × {𝑅}):𝐼⟶Ring)
105, 6, 7, 9prds1 18834 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (1r ∘ (𝐼 × {𝑅})) = (1r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
11 fn0g 17483 . . . . . . 7 0g Fn V
1211a1i 11 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 0g Fn V)
13 fnmgp 18711 . . . . . . 7 mulGrp Fn V
1413a1i 11 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → mulGrp Fn V)
15 ssv 3766 . . . . . . 7 ran mulGrp ⊆ V
1615a1i 11 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ran mulGrp ⊆ V)
17 fnco 6160 . . . . . 6 ((0g Fn V ∧ mulGrp Fn V ∧ ran mulGrp ⊆ V) → (0g ∘ mulGrp) Fn V)
1812, 14, 16, 17syl3anc 1477 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (0g ∘ mulGrp) Fn V)
19 df-ur 18722 . . . . . 6 1r = (0g ∘ mulGrp)
2019fneq1i 6146 . . . . 5 (1r Fn V ↔ (0g ∘ mulGrp) Fn V)
2118, 20sylibr 224 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 1r Fn V)
22 elex 3352 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ V)
2322adantr 472 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑅 ∈ V)
24 fcoconst 6565 . . . 4 ((1r Fn V ∧ 𝑅 ∈ V) → (1r ∘ (𝐼 × {𝑅})) = (𝐼 × {(1r𝑅)}))
2521, 23, 24syl2anc 696 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (1r ∘ (𝐼 × {𝑅})) = (𝐼 × {(1r𝑅)}))
26 pws1.o . . . . 5 1 = (1r𝑅)
2726sneqi 4332 . . . 4 { 1 } = {(1r𝑅)}
2827xpeq2i 5293 . . 3 (𝐼 × { 1 }) = (𝐼 × {(1r𝑅)})
2925, 28syl6eqr 2812 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (1r ∘ (𝐼 × {𝑅})) = (𝐼 × { 1 }))
304, 10, 293eqtr2rd 2801 1 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (𝐼 × { 1 }) = (1r𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  Vcvv 3340  wss 3715  {csn 4321   × cxp 5264  ran crn 5267  ccom 5270   Fn wfn 6044  wf 6045  cfv 6049  (class class class)co 6814  Scalarcsca 16166  0gc0g 16322  Xscprds 16328  s cpws 16329  mulGrpcmgp 18709  1rcur 18721  Ringcrg 18767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-map 8027  df-ixp 8077  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-sup 8515  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-fz 12540  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-plusg 16176  df-mulr 16177  df-sca 16179  df-vsca 16180  df-ip 16181  df-tset 16182  df-ple 16183  df-ds 16186  df-hom 16188  df-cco 16189  df-0g 16324  df-prds 16330  df-pws 16332  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-mgp 18710  df-ur 18722  df-ring 18769
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator