MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsco1rhm Structured version   Visualization version   GIF version

Theorem pwsco1rhm 19482
Description: Right composition with a function on the index sets yields a ring homomorphism of structure powers. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
pwsco1rhm.y 𝑌 = (𝑅s 𝐴)
pwsco1rhm.z 𝑍 = (𝑅s 𝐵)
pwsco1rhm.c 𝐶 = (Base‘𝑍)
pwsco1rhm.r (𝜑𝑅 ∈ Ring)
pwsco1rhm.a (𝜑𝐴𝑉)
pwsco1rhm.b (𝜑𝐵𝑊)
pwsco1rhm.f (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
pwsco1rhm (𝜑 → (𝑔𝐶 ↦ (𝑔𝐹)) ∈ (𝑍 RingHom 𝑌))
Distinct variable groups:   𝐴,𝑔   𝐵,𝑔   𝜑,𝑔   𝑅,𝑔   𝑔,𝑌   𝐶,𝑔   𝑔,𝐹   𝑔,𝑍
Allowed substitution hints:   𝑉(𝑔)   𝑊(𝑔)

Proof of Theorem pwsco1rhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwsco1rhm.r . . 3 (𝜑𝑅 ∈ Ring)
2 pwsco1rhm.b . . 3 (𝜑𝐵𝑊)
3 pwsco1rhm.z . . . 4 𝑍 = (𝑅s 𝐵)
43pwsring 19357 . . 3 ((𝑅 ∈ Ring ∧ 𝐵𝑊) → 𝑍 ∈ Ring)
51, 2, 4syl2anc 586 . 2 (𝜑𝑍 ∈ Ring)
6 pwsco1rhm.a . . 3 (𝜑𝐴𝑉)
7 pwsco1rhm.y . . . 4 𝑌 = (𝑅s 𝐴)
87pwsring 19357 . . 3 ((𝑅 ∈ Ring ∧ 𝐴𝑉) → 𝑌 ∈ Ring)
91, 6, 8syl2anc 586 . 2 (𝜑𝑌 ∈ Ring)
10 pwsco1rhm.c . . . . 5 𝐶 = (Base‘𝑍)
11 ringmnd 19298 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
121, 11syl 17 . . . . 5 (𝜑𝑅 ∈ Mnd)
13 pwsco1rhm.f . . . . 5 (𝜑𝐹:𝐴𝐵)
147, 3, 10, 12, 6, 2, 13pwsco1mhm 17988 . . . 4 (𝜑 → (𝑔𝐶 ↦ (𝑔𝐹)) ∈ (𝑍 MndHom 𝑌))
15 ringgrp 19294 . . . . . 6 (𝑍 ∈ Ring → 𝑍 ∈ Grp)
165, 15syl 17 . . . . 5 (𝜑𝑍 ∈ Grp)
17 ringgrp 19294 . . . . . 6 (𝑌 ∈ Ring → 𝑌 ∈ Grp)
189, 17syl 17 . . . . 5 (𝜑𝑌 ∈ Grp)
19 ghmmhmb 18361 . . . . 5 ((𝑍 ∈ Grp ∧ 𝑌 ∈ Grp) → (𝑍 GrpHom 𝑌) = (𝑍 MndHom 𝑌))
2016, 18, 19syl2anc 586 . . . 4 (𝜑 → (𝑍 GrpHom 𝑌) = (𝑍 MndHom 𝑌))
2114, 20eleqtrrd 2914 . . 3 (𝜑 → (𝑔𝐶 ↦ (𝑔𝐹)) ∈ (𝑍 GrpHom 𝑌))
22 eqid 2819 . . . . 5 ((mulGrp‘𝑅) ↑s 𝐴) = ((mulGrp‘𝑅) ↑s 𝐴)
23 eqid 2819 . . . . 5 ((mulGrp‘𝑅) ↑s 𝐵) = ((mulGrp‘𝑅) ↑s 𝐵)
24 eqid 2819 . . . . 5 (Base‘((mulGrp‘𝑅) ↑s 𝐵)) = (Base‘((mulGrp‘𝑅) ↑s 𝐵))
25 eqid 2819 . . . . . . 7 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2625ringmgp 19295 . . . . . 6 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
271, 26syl 17 . . . . 5 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
2822, 23, 24, 27, 6, 2, 13pwsco1mhm 17988 . . . 4 (𝜑 → (𝑔 ∈ (Base‘((mulGrp‘𝑅) ↑s 𝐵)) ↦ (𝑔𝐹)) ∈ (((mulGrp‘𝑅) ↑s 𝐵) MndHom ((mulGrp‘𝑅) ↑s 𝐴)))
29 eqid 2819 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
303, 29pwsbas 16752 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ 𝐵𝑊) → ((Base‘𝑅) ↑m 𝐵) = (Base‘𝑍))
3112, 2, 30syl2anc 586 . . . . . . 7 (𝜑 → ((Base‘𝑅) ↑m 𝐵) = (Base‘𝑍))
3231, 10syl6eqr 2872 . . . . . 6 (𝜑 → ((Base‘𝑅) ↑m 𝐵) = 𝐶)
3325, 29mgpbas 19237 . . . . . . . 8 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
3423, 33pwsbas 16752 . . . . . . 7 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝐵𝑊) → ((Base‘𝑅) ↑m 𝐵) = (Base‘((mulGrp‘𝑅) ↑s 𝐵)))
3527, 2, 34syl2anc 586 . . . . . 6 (𝜑 → ((Base‘𝑅) ↑m 𝐵) = (Base‘((mulGrp‘𝑅) ↑s 𝐵)))
3632, 35eqtr3d 2856 . . . . 5 (𝜑𝐶 = (Base‘((mulGrp‘𝑅) ↑s 𝐵)))
3736mpteq1d 5146 . . . 4 (𝜑 → (𝑔𝐶 ↦ (𝑔𝐹)) = (𝑔 ∈ (Base‘((mulGrp‘𝑅) ↑s 𝐵)) ↦ (𝑔𝐹)))
38 eqidd 2820 . . . . 5 (𝜑 → (Base‘(mulGrp‘𝑍)) = (Base‘(mulGrp‘𝑍)))
39 eqidd 2820 . . . . 5 (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌)))
40 eqid 2819 . . . . . . . 8 (mulGrp‘𝑍) = (mulGrp‘𝑍)
41 eqid 2819 . . . . . . . 8 (Base‘(mulGrp‘𝑍)) = (Base‘(mulGrp‘𝑍))
42 eqid 2819 . . . . . . . 8 (+g‘(mulGrp‘𝑍)) = (+g‘(mulGrp‘𝑍))
43 eqid 2819 . . . . . . . 8 (+g‘((mulGrp‘𝑅) ↑s 𝐵)) = (+g‘((mulGrp‘𝑅) ↑s 𝐵))
443, 25, 23, 40, 41, 24, 42, 43pwsmgp 19360 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐵𝑊) → ((Base‘(mulGrp‘𝑍)) = (Base‘((mulGrp‘𝑅) ↑s 𝐵)) ∧ (+g‘(mulGrp‘𝑍)) = (+g‘((mulGrp‘𝑅) ↑s 𝐵))))
451, 2, 44syl2anc 586 . . . . . 6 (𝜑 → ((Base‘(mulGrp‘𝑍)) = (Base‘((mulGrp‘𝑅) ↑s 𝐵)) ∧ (+g‘(mulGrp‘𝑍)) = (+g‘((mulGrp‘𝑅) ↑s 𝐵))))
4645simpld 497 . . . . 5 (𝜑 → (Base‘(mulGrp‘𝑍)) = (Base‘((mulGrp‘𝑅) ↑s 𝐵)))
47 eqid 2819 . . . . . . . 8 (mulGrp‘𝑌) = (mulGrp‘𝑌)
48 eqid 2819 . . . . . . . 8 (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌))
49 eqid 2819 . . . . . . . 8 (Base‘((mulGrp‘𝑅) ↑s 𝐴)) = (Base‘((mulGrp‘𝑅) ↑s 𝐴))
50 eqid 2819 . . . . . . . 8 (+g‘(mulGrp‘𝑌)) = (+g‘(mulGrp‘𝑌))
51 eqid 2819 . . . . . . . 8 (+g‘((mulGrp‘𝑅) ↑s 𝐴)) = (+g‘((mulGrp‘𝑅) ↑s 𝐴))
527, 25, 22, 47, 48, 49, 50, 51pwsmgp 19360 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐴𝑉) → ((Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s 𝐴)) ∧ (+g‘(mulGrp‘𝑌)) = (+g‘((mulGrp‘𝑅) ↑s 𝐴))))
531, 6, 52syl2anc 586 . . . . . 6 (𝜑 → ((Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s 𝐴)) ∧ (+g‘(mulGrp‘𝑌)) = (+g‘((mulGrp‘𝑅) ↑s 𝐴))))
5453simpld 497 . . . . 5 (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s 𝐴)))
5545simprd 498 . . . . . 6 (𝜑 → (+g‘(mulGrp‘𝑍)) = (+g‘((mulGrp‘𝑅) ↑s 𝐵)))
5655oveqdr 7176 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(mulGrp‘𝑍)) ∧ 𝑦 ∈ (Base‘(mulGrp‘𝑍)))) → (𝑥(+g‘(mulGrp‘𝑍))𝑦) = (𝑥(+g‘((mulGrp‘𝑅) ↑s 𝐵))𝑦))
5753simprd 498 . . . . . 6 (𝜑 → (+g‘(mulGrp‘𝑌)) = (+g‘((mulGrp‘𝑅) ↑s 𝐴)))
5857oveqdr 7176 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(mulGrp‘𝑌)) ∧ 𝑦 ∈ (Base‘(mulGrp‘𝑌)))) → (𝑥(+g‘(mulGrp‘𝑌))𝑦) = (𝑥(+g‘((mulGrp‘𝑅) ↑s 𝐴))𝑦))
5938, 39, 46, 54, 56, 58mhmpropd 17954 . . . 4 (𝜑 → ((mulGrp‘𝑍) MndHom (mulGrp‘𝑌)) = (((mulGrp‘𝑅) ↑s 𝐵) MndHom ((mulGrp‘𝑅) ↑s 𝐴)))
6028, 37, 593eltr4d 2926 . . 3 (𝜑 → (𝑔𝐶 ↦ (𝑔𝐹)) ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘𝑌)))
6121, 60jca 514 . 2 (𝜑 → ((𝑔𝐶 ↦ (𝑔𝐹)) ∈ (𝑍 GrpHom 𝑌) ∧ (𝑔𝐶 ↦ (𝑔𝐹)) ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘𝑌))))
6240, 47isrhm 19465 . 2 ((𝑔𝐶 ↦ (𝑔𝐹)) ∈ (𝑍 RingHom 𝑌) ↔ ((𝑍 ∈ Ring ∧ 𝑌 ∈ Ring) ∧ ((𝑔𝐶 ↦ (𝑔𝐹)) ∈ (𝑍 GrpHom 𝑌) ∧ (𝑔𝐶 ↦ (𝑔𝐹)) ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘𝑌)))))
635, 9, 61, 62syl21anbrc 1339 1 (𝜑 → (𝑔𝐶 ↦ (𝑔𝐹)) ∈ (𝑍 RingHom 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1531  wcel 2108  cmpt 5137  ccom 5552  wf 6344  cfv 6348  (class class class)co 7148  m cmap 8398  Basecbs 16475  +gcplusg 16557  s cpws 16712  Mndcmnd 17903   MndHom cmhm 17946  Grpcgrp 18095   GrpHom cghm 18347  mulGrpcmgp 19231  Ringcrg 19289   RingHom crh 19456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12885  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-0g 16707  df-prds 16713  df-pws 16715  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-grp 18098  df-minusg 18099  df-ghm 18348  df-mgp 19232  df-ur 19244  df-ring 19291  df-rnghom 19459
This theorem is referenced by:  evls1rhmlem  20476
  Copyright terms: Public domain W3C validator