MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsdiagrhm Structured version   Visualization version   GIF version

Theorem pwsdiagrhm 19498
Description: Diagonal homomorphism into a structure power (Rings). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
pwsdiagrhm.y 𝑌 = (𝑅s 𝐼)
pwsdiagrhm.b 𝐵 = (Base‘𝑅)
pwsdiagrhm.f 𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))
Assertion
Ref Expression
pwsdiagrhm ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐹 ∈ (𝑅 RingHom 𝑌))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐼   𝑥,𝑅   𝑥,𝑊   𝑥,𝑌
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem pwsdiagrhm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 483 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑅 ∈ Ring)
2 pwsdiagrhm.y . . 3 𝑌 = (𝑅s 𝐼)
32pwsring 19294 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑌 ∈ Ring)
4 ringgrp 19231 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
5 pwsdiagrhm.b . . . . 5 𝐵 = (Base‘𝑅)
6 pwsdiagrhm.f . . . . 5 𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))
72, 5, 6pwsdiagghm 18324 . . . 4 ((𝑅 ∈ Grp ∧ 𝐼𝑊) → 𝐹 ∈ (𝑅 GrpHom 𝑌))
84, 7sylan 580 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐹 ∈ (𝑅 GrpHom 𝑌))
9 eqid 2818 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
109ringmgp 19232 . . . . 5 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
11 eqid 2818 . . . . . 6 ((mulGrp‘𝑅) ↑s 𝐼) = ((mulGrp‘𝑅) ↑s 𝐼)
129, 5mgpbas 19174 . . . . . 6 𝐵 = (Base‘(mulGrp‘𝑅))
1311, 12, 6pwsdiagmhm 17983 . . . . 5 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝐼𝑊) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom ((mulGrp‘𝑅) ↑s 𝐼)))
1410, 13sylan 580 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom ((mulGrp‘𝑅) ↑s 𝐼)))
15 eqidd 2819 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅)))
16 eqidd 2819 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌)))
17 eqid 2818 . . . . . . 7 (mulGrp‘𝑌) = (mulGrp‘𝑌)
18 eqid 2818 . . . . . . 7 (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌))
19 eqid 2818 . . . . . . 7 (Base‘((mulGrp‘𝑅) ↑s 𝐼)) = (Base‘((mulGrp‘𝑅) ↑s 𝐼))
20 eqid 2818 . . . . . . 7 (+g‘(mulGrp‘𝑌)) = (+g‘(mulGrp‘𝑌))
21 eqid 2818 . . . . . . 7 (+g‘((mulGrp‘𝑅) ↑s 𝐼)) = (+g‘((mulGrp‘𝑅) ↑s 𝐼))
222, 9, 11, 17, 18, 19, 20, 21pwsmgp 19297 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → ((Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s 𝐼)) ∧ (+g‘(mulGrp‘𝑌)) = (+g‘((mulGrp‘𝑅) ↑s 𝐼))))
2322simpld 495 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s 𝐼)))
24 eqidd 2819 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ (𝑦 ∈ (Base‘(mulGrp‘𝑅)) ∧ 𝑧 ∈ (Base‘(mulGrp‘𝑅)))) → (𝑦(+g‘(mulGrp‘𝑅))𝑧) = (𝑦(+g‘(mulGrp‘𝑅))𝑧))
2522simprd 496 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (+g‘(mulGrp‘𝑌)) = (+g‘((mulGrp‘𝑅) ↑s 𝐼)))
2625oveqdr 7173 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ (𝑦 ∈ (Base‘(mulGrp‘𝑌)) ∧ 𝑧 ∈ (Base‘(mulGrp‘𝑌)))) → (𝑦(+g‘(mulGrp‘𝑌))𝑧) = (𝑦(+g‘((mulGrp‘𝑅) ↑s 𝐼))𝑧))
2715, 16, 15, 23, 24, 26mhmpropd 17950 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → ((mulGrp‘𝑅) MndHom (mulGrp‘𝑌)) = ((mulGrp‘𝑅) MndHom ((mulGrp‘𝑅) ↑s 𝐼)))
2814, 27eleqtrrd 2913 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑌)))
298, 28jca 512 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (𝐹 ∈ (𝑅 GrpHom 𝑌) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑌))))
309, 17isrhm 19402 . 2 (𝐹 ∈ (𝑅 RingHom 𝑌) ↔ ((𝑅 ∈ Ring ∧ 𝑌 ∈ Ring) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑌) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑌)))))
311, 3, 29, 30syl21anbrc 1336 1 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐹 ∈ (𝑅 RingHom 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  {csn 4557  cmpt 5137   × cxp 5546  cfv 6348  (class class class)co 7145  Basecbs 16471  +gcplusg 16553  s cpws 16708  Mndcmnd 17899   MndHom cmhm 17942  Grpcgrp 18041   GrpHom cghm 18293  mulGrpcmgp 19168  Ringcrg 19226   RingHom crh 19393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-map 8397  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12881  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-plusg 16566  df-mulr 16567  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-hom 16577  df-cco 16578  df-0g 16703  df-prds 16709  df-pws 16711  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-mhm 17944  df-grp 18044  df-minusg 18045  df-ghm 18294  df-mgp 19169  df-ur 19181  df-ring 19228  df-rnghom 19396
This theorem is referenced by:  evlsval2  20228
  Copyright terms: Public domain W3C validator