MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsdompw Structured version   Visualization version   GIF version

Theorem pwsdompw 8970
Description: Lemma for domtriom 9209. This is the equinumerosity version of the algebraic identity Σ𝑘𝑛(2↑𝑘) = (2↑𝑛) − 1. (Contributed by Mario Carneiro, 7-Feb-2013.)
Assertion
Ref Expression
pwsdompw ((𝑛 ∈ ω ∧ ∀𝑘 ∈ suc 𝑛(𝐵𝑘) ≈ 𝒫 𝑘) → 𝑘𝑛 (𝐵𝑘) ≺ (𝐵𝑛))
Distinct variable group:   𝐵,𝑘,𝑛

Proof of Theorem pwsdompw
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 suceq 5749 . . . . 5 (𝑛 = ∅ → suc 𝑛 = suc ∅)
21raleqdv 3133 . . . 4 (𝑛 = ∅ → (∀𝑘 ∈ suc 𝑛(𝐵𝑘) ≈ 𝒫 𝑘 ↔ ∀𝑘 ∈ suc ∅(𝐵𝑘) ≈ 𝒫 𝑘))
3 iuneq1 4500 . . . . 5 (𝑛 = ∅ → 𝑘𝑛 (𝐵𝑘) = 𝑘 ∈ ∅ (𝐵𝑘))
4 fveq2 6148 . . . . 5 (𝑛 = ∅ → (𝐵𝑛) = (𝐵‘∅))
53, 4breq12d 4626 . . . 4 (𝑛 = ∅ → ( 𝑘𝑛 (𝐵𝑘) ≺ (𝐵𝑛) ↔ 𝑘 ∈ ∅ (𝐵𝑘) ≺ (𝐵‘∅)))
62, 5imbi12d 334 . . 3 (𝑛 = ∅ → ((∀𝑘 ∈ suc 𝑛(𝐵𝑘) ≈ 𝒫 𝑘 𝑘𝑛 (𝐵𝑘) ≺ (𝐵𝑛)) ↔ (∀𝑘 ∈ suc ∅(𝐵𝑘) ≈ 𝒫 𝑘 𝑘 ∈ ∅ (𝐵𝑘) ≺ (𝐵‘∅))))
7 suceq 5749 . . . . 5 (𝑛 = 𝑚 → suc 𝑛 = suc 𝑚)
87raleqdv 3133 . . . 4 (𝑛 = 𝑚 → (∀𝑘 ∈ suc 𝑛(𝐵𝑘) ≈ 𝒫 𝑘 ↔ ∀𝑘 ∈ suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘))
9 iuneq1 4500 . . . . 5 (𝑛 = 𝑚 𝑘𝑛 (𝐵𝑘) = 𝑘𝑚 (𝐵𝑘))
10 fveq2 6148 . . . . 5 (𝑛 = 𝑚 → (𝐵𝑛) = (𝐵𝑚))
119, 10breq12d 4626 . . . 4 (𝑛 = 𝑚 → ( 𝑘𝑛 (𝐵𝑘) ≺ (𝐵𝑛) ↔ 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚)))
128, 11imbi12d 334 . . 3 (𝑛 = 𝑚 → ((∀𝑘 ∈ suc 𝑛(𝐵𝑘) ≈ 𝒫 𝑘 𝑘𝑛 (𝐵𝑘) ≺ (𝐵𝑛)) ↔ (∀𝑘 ∈ suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚))))
13 suceq 5749 . . . . 5 (𝑛 = suc 𝑚 → suc 𝑛 = suc suc 𝑚)
1413raleqdv 3133 . . . 4 (𝑛 = suc 𝑚 → (∀𝑘 ∈ suc 𝑛(𝐵𝑘) ≈ 𝒫 𝑘 ↔ ∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘))
15 iuneq1 4500 . . . . 5 (𝑛 = suc 𝑚 𝑘𝑛 (𝐵𝑘) = 𝑘 ∈ suc 𝑚(𝐵𝑘))
16 fveq2 6148 . . . . 5 (𝑛 = suc 𝑚 → (𝐵𝑛) = (𝐵‘suc 𝑚))
1715, 16breq12d 4626 . . . 4 (𝑛 = suc 𝑚 → ( 𝑘𝑛 (𝐵𝑘) ≺ (𝐵𝑛) ↔ 𝑘 ∈ suc 𝑚(𝐵𝑘) ≺ (𝐵‘suc 𝑚)))
1814, 17imbi12d 334 . . 3 (𝑛 = suc 𝑚 → ((∀𝑘 ∈ suc 𝑛(𝐵𝑘) ≈ 𝒫 𝑘 𝑘𝑛 (𝐵𝑘) ≺ (𝐵𝑛)) ↔ (∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘 𝑘 ∈ suc 𝑚(𝐵𝑘) ≺ (𝐵‘suc 𝑚))))
19 0iun 4543 . . . 4 𝑘 ∈ ∅ (𝐵𝑘) = ∅
20 0ex 4750 . . . . . . 7 ∅ ∈ V
2120sucid 5763 . . . . . 6 ∅ ∈ suc ∅
22 fveq2 6148 . . . . . . . 8 (𝑘 = ∅ → (𝐵𝑘) = (𝐵‘∅))
23 pweq 4133 . . . . . . . 8 (𝑘 = ∅ → 𝒫 𝑘 = 𝒫 ∅)
2422, 23breq12d 4626 . . . . . . 7 (𝑘 = ∅ → ((𝐵𝑘) ≈ 𝒫 𝑘 ↔ (𝐵‘∅) ≈ 𝒫 ∅))
2524rspcv 3291 . . . . . 6 (∅ ∈ suc ∅ → (∀𝑘 ∈ suc ∅(𝐵𝑘) ≈ 𝒫 𝑘 → (𝐵‘∅) ≈ 𝒫 ∅))
2621, 25ax-mp 5 . . . . 5 (∀𝑘 ∈ suc ∅(𝐵𝑘) ≈ 𝒫 𝑘 → (𝐵‘∅) ≈ 𝒫 ∅)
2720canth2 8057 . . . . . 6 ∅ ≺ 𝒫 ∅
28 ensym 7949 . . . . . 6 ((𝐵‘∅) ≈ 𝒫 ∅ → 𝒫 ∅ ≈ (𝐵‘∅))
29 sdomentr 8038 . . . . . 6 ((∅ ≺ 𝒫 ∅ ∧ 𝒫 ∅ ≈ (𝐵‘∅)) → ∅ ≺ (𝐵‘∅))
3027, 28, 29sylancr 694 . . . . 5 ((𝐵‘∅) ≈ 𝒫 ∅ → ∅ ≺ (𝐵‘∅))
3126, 30syl 17 . . . 4 (∀𝑘 ∈ suc ∅(𝐵𝑘) ≈ 𝒫 𝑘 → ∅ ≺ (𝐵‘∅))
3219, 31syl5eqbr 4648 . . 3 (∀𝑘 ∈ suc ∅(𝐵𝑘) ≈ 𝒫 𝑘 𝑘 ∈ ∅ (𝐵𝑘) ≺ (𝐵‘∅))
33 sssucid 5761 . . . . . . . . 9 suc 𝑚 ⊆ suc suc 𝑚
34 ssralv 3645 . . . . . . . . 9 (suc 𝑚 ⊆ suc suc 𝑚 → (∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘 → ∀𝑘 ∈ suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘))
3533, 34ax-mp 5 . . . . . . . 8 (∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘 → ∀𝑘 ∈ suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘)
36 pm2.27 42 . . . . . . . 8 (∀𝑘 ∈ suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘 → ((∀𝑘 ∈ suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚)) → 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚)))
3735, 36syl 17 . . . . . . 7 (∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘 → ((∀𝑘 ∈ suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚)) → 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚)))
3837adantl 482 . . . . . 6 ((𝑚 ∈ ω ∧ ∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘) → ((∀𝑘 ∈ suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚)) → 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚)))
39 vex 3189 . . . . . . . . . . . . 13 𝑚 ∈ V
4039sucid 5763 . . . . . . . . . . . 12 𝑚 ∈ suc 𝑚
41 elelsuc 5756 . . . . . . . . . . . 12 (𝑚 ∈ suc 𝑚𝑚 ∈ suc suc 𝑚)
42 fveq2 6148 . . . . . . . . . . . . . 14 (𝑘 = 𝑚 → (𝐵𝑘) = (𝐵𝑚))
43 pweq 4133 . . . . . . . . . . . . . 14 (𝑘 = 𝑚 → 𝒫 𝑘 = 𝒫 𝑚)
4442, 43breq12d 4626 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → ((𝐵𝑘) ≈ 𝒫 𝑘 ↔ (𝐵𝑚) ≈ 𝒫 𝑚))
4544rspcv 3291 . . . . . . . . . . . 12 (𝑚 ∈ suc suc 𝑚 → (∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘 → (𝐵𝑚) ≈ 𝒫 𝑚))
4640, 41, 45mp2b 10 . . . . . . . . . . 11 (∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘 → (𝐵𝑚) ≈ 𝒫 𝑚)
47 cdaen 8939 . . . . . . . . . . 11 (((𝐵𝑚) ≈ 𝒫 𝑚 ∧ (𝐵𝑚) ≈ 𝒫 𝑚) → ((𝐵𝑚) +𝑐 (𝐵𝑚)) ≈ (𝒫 𝑚 +𝑐 𝒫 𝑚))
4846, 46, 47syl2anc 692 . . . . . . . . . 10 (∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘 → ((𝐵𝑚) +𝑐 (𝐵𝑚)) ≈ (𝒫 𝑚 +𝑐 𝒫 𝑚))
49 pwcda1 8960 . . . . . . . . . . 11 (𝑚 ∈ ω → (𝒫 𝑚 +𝑐 𝒫 𝑚) ≈ 𝒫 (𝑚 +𝑐 1𝑜))
50 nnord 7020 . . . . . . . . . . . . . 14 (𝑚 ∈ ω → Ord 𝑚)
51 ordirr 5700 . . . . . . . . . . . . . 14 (Ord 𝑚 → ¬ 𝑚𝑚)
5250, 51syl 17 . . . . . . . . . . . . 13 (𝑚 ∈ ω → ¬ 𝑚𝑚)
53 cda1en 8941 . . . . . . . . . . . . 13 ((𝑚 ∈ ω ∧ ¬ 𝑚𝑚) → (𝑚 +𝑐 1𝑜) ≈ suc 𝑚)
5452, 53mpdan 701 . . . . . . . . . . . 12 (𝑚 ∈ ω → (𝑚 +𝑐 1𝑜) ≈ suc 𝑚)
55 pwen 8077 . . . . . . . . . . . 12 ((𝑚 +𝑐 1𝑜) ≈ suc 𝑚 → 𝒫 (𝑚 +𝑐 1𝑜) ≈ 𝒫 suc 𝑚)
5654, 55syl 17 . . . . . . . . . . 11 (𝑚 ∈ ω → 𝒫 (𝑚 +𝑐 1𝑜) ≈ 𝒫 suc 𝑚)
57 entr 7952 . . . . . . . . . . 11 (((𝒫 𝑚 +𝑐 𝒫 𝑚) ≈ 𝒫 (𝑚 +𝑐 1𝑜) ∧ 𝒫 (𝑚 +𝑐 1𝑜) ≈ 𝒫 suc 𝑚) → (𝒫 𝑚 +𝑐 𝒫 𝑚) ≈ 𝒫 suc 𝑚)
5849, 56, 57syl2anc 692 . . . . . . . . . 10 (𝑚 ∈ ω → (𝒫 𝑚 +𝑐 𝒫 𝑚) ≈ 𝒫 suc 𝑚)
59 entr 7952 . . . . . . . . . 10 ((((𝐵𝑚) +𝑐 (𝐵𝑚)) ≈ (𝒫 𝑚 +𝑐 𝒫 𝑚) ∧ (𝒫 𝑚 +𝑐 𝒫 𝑚) ≈ 𝒫 suc 𝑚) → ((𝐵𝑚) +𝑐 (𝐵𝑚)) ≈ 𝒫 suc 𝑚)
6048, 58, 59syl2an 494 . . . . . . . . 9 ((∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘𝑚 ∈ ω) → ((𝐵𝑚) +𝑐 (𝐵𝑚)) ≈ 𝒫 suc 𝑚)
6139sucex 6958 . . . . . . . . . . . . 13 suc 𝑚 ∈ V
6261sucid 5763 . . . . . . . . . . . 12 suc 𝑚 ∈ suc suc 𝑚
63 fveq2 6148 . . . . . . . . . . . . . 14 (𝑘 = suc 𝑚 → (𝐵𝑘) = (𝐵‘suc 𝑚))
64 pweq 4133 . . . . . . . . . . . . . 14 (𝑘 = suc 𝑚 → 𝒫 𝑘 = 𝒫 suc 𝑚)
6563, 64breq12d 4626 . . . . . . . . . . . . 13 (𝑘 = suc 𝑚 → ((𝐵𝑘) ≈ 𝒫 𝑘 ↔ (𝐵‘suc 𝑚) ≈ 𝒫 suc 𝑚))
6665rspcv 3291 . . . . . . . . . . . 12 (suc 𝑚 ∈ suc suc 𝑚 → (∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘 → (𝐵‘suc 𝑚) ≈ 𝒫 suc 𝑚))
6762, 66ax-mp 5 . . . . . . . . . . 11 (∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘 → (𝐵‘suc 𝑚) ≈ 𝒫 suc 𝑚)
6867ensymd 7951 . . . . . . . . . 10 (∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘 → 𝒫 suc 𝑚 ≈ (𝐵‘suc 𝑚))
6968adantr 481 . . . . . . . . 9 ((∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘𝑚 ∈ ω) → 𝒫 suc 𝑚 ≈ (𝐵‘suc 𝑚))
70 entr 7952 . . . . . . . . 9 ((((𝐵𝑚) +𝑐 (𝐵𝑚)) ≈ 𝒫 suc 𝑚 ∧ 𝒫 suc 𝑚 ≈ (𝐵‘suc 𝑚)) → ((𝐵𝑚) +𝑐 (𝐵𝑚)) ≈ (𝐵‘suc 𝑚))
7160, 69, 70syl2anc 692 . . . . . . . 8 ((∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘𝑚 ∈ ω) → ((𝐵𝑚) +𝑐 (𝐵𝑚)) ≈ (𝐵‘suc 𝑚))
7271ancoms 469 . . . . . . 7 ((𝑚 ∈ ω ∧ ∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘) → ((𝐵𝑚) +𝑐 (𝐵𝑚)) ≈ (𝐵‘suc 𝑚))
73 nnfi 8097 . . . . . . . . . . . 12 (𝑚 ∈ ω → 𝑚 ∈ Fin)
74 pwfi 8205 . . . . . . . . . . . . 13 (𝑚 ∈ Fin ↔ 𝒫 𝑚 ∈ Fin)
75 isfinite 8493 . . . . . . . . . . . . 13 (𝒫 𝑚 ∈ Fin ↔ 𝒫 𝑚 ≺ ω)
7674, 75bitri 264 . . . . . . . . . . . 12 (𝑚 ∈ Fin ↔ 𝒫 𝑚 ≺ ω)
7773, 76sylib 208 . . . . . . . . . . 11 (𝑚 ∈ ω → 𝒫 𝑚 ≺ ω)
78 ensdomtr 8040 . . . . . . . . . . 11 (((𝐵𝑚) ≈ 𝒫 𝑚 ∧ 𝒫 𝑚 ≺ ω) → (𝐵𝑚) ≺ ω)
7946, 77, 78syl2an 494 . . . . . . . . . 10 ((∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘𝑚 ∈ ω) → (𝐵𝑚) ≺ ω)
80 isfinite 8493 . . . . . . . . . 10 ((𝐵𝑚) ∈ Fin ↔ (𝐵𝑚) ≺ ω)
8179, 80sylibr 224 . . . . . . . . 9 ((∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘𝑚 ∈ ω) → (𝐵𝑚) ∈ Fin)
8281ancoms 469 . . . . . . . 8 ((𝑚 ∈ ω ∧ ∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘) → (𝐵𝑚) ∈ Fin)
8339, 42iunsuc 5766 . . . . . . . . . . 11 𝑘 ∈ suc 𝑚(𝐵𝑘) = ( 𝑘𝑚 (𝐵𝑘) ∪ (𝐵𝑚))
84 fvex 6158 . . . . . . . . . . . . 13 (𝐵𝑘) ∈ V
8539, 84iunex 7093 . . . . . . . . . . . 12 𝑘𝑚 (𝐵𝑘) ∈ V
86 fvex 6158 . . . . . . . . . . . 12 (𝐵𝑚) ∈ V
87 uncdadom 8937 . . . . . . . . . . . 12 (( 𝑘𝑚 (𝐵𝑘) ∈ V ∧ (𝐵𝑚) ∈ V) → ( 𝑘𝑚 (𝐵𝑘) ∪ (𝐵𝑚)) ≼ ( 𝑘𝑚 (𝐵𝑘) +𝑐 (𝐵𝑚)))
8885, 86, 87mp2an 707 . . . . . . . . . . 11 ( 𝑘𝑚 (𝐵𝑘) ∪ (𝐵𝑚)) ≼ ( 𝑘𝑚 (𝐵𝑘) +𝑐 (𝐵𝑚))
8983, 88eqbrtri 4634 . . . . . . . . . 10 𝑘 ∈ suc 𝑚(𝐵𝑘) ≼ ( 𝑘𝑚 (𝐵𝑘) +𝑐 (𝐵𝑚))
90 sdomtr 8042 . . . . . . . . . . . . . . . 16 (( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) ∧ (𝐵𝑚) ≺ ω) → 𝑘𝑚 (𝐵𝑘) ≺ ω)
9180, 90sylan2b 492 . . . . . . . . . . . . . . 15 (( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) ∧ (𝐵𝑚) ∈ Fin) → 𝑘𝑚 (𝐵𝑘) ≺ ω)
92 isfinite 8493 . . . . . . . . . . . . . . 15 ( 𝑘𝑚 (𝐵𝑘) ∈ Fin ↔ 𝑘𝑚 (𝐵𝑘) ≺ ω)
9391, 92sylibr 224 . . . . . . . . . . . . . 14 (( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) ∧ (𝐵𝑚) ∈ Fin) → 𝑘𝑚 (𝐵𝑘) ∈ Fin)
94 finnum 8718 . . . . . . . . . . . . . 14 ( 𝑘𝑚 (𝐵𝑘) ∈ Fin → 𝑘𝑚 (𝐵𝑘) ∈ dom card)
9593, 94syl 17 . . . . . . . . . . . . 13 (( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) ∧ (𝐵𝑚) ∈ Fin) → 𝑘𝑚 (𝐵𝑘) ∈ dom card)
96 finnum 8718 . . . . . . . . . . . . . 14 ((𝐵𝑚) ∈ Fin → (𝐵𝑚) ∈ dom card)
9796adantl 482 . . . . . . . . . . . . 13 (( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) ∧ (𝐵𝑚) ∈ Fin) → (𝐵𝑚) ∈ dom card)
98 cardacda 8964 . . . . . . . . . . . . 13 (( 𝑘𝑚 (𝐵𝑘) ∈ dom card ∧ (𝐵𝑚) ∈ dom card) → ( 𝑘𝑚 (𝐵𝑘) +𝑐 (𝐵𝑚)) ≈ ((card‘ 𝑘𝑚 (𝐵𝑘)) +𝑜 (card‘(𝐵𝑚))))
9995, 97, 98syl2anc 692 . . . . . . . . . . . 12 (( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) ∧ (𝐵𝑚) ∈ Fin) → ( 𝑘𝑚 (𝐵𝑘) +𝑐 (𝐵𝑚)) ≈ ((card‘ 𝑘𝑚 (𝐵𝑘)) +𝑜 (card‘(𝐵𝑚))))
100 ficardom 8731 . . . . . . . . . . . . . . . 16 ( 𝑘𝑚 (𝐵𝑘) ∈ Fin → (card‘ 𝑘𝑚 (𝐵𝑘)) ∈ ω)
10193, 100syl 17 . . . . . . . . . . . . . . 15 (( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) ∧ (𝐵𝑚) ∈ Fin) → (card‘ 𝑘𝑚 (𝐵𝑘)) ∈ ω)
102 ficardom 8731 . . . . . . . . . . . . . . . 16 ((𝐵𝑚) ∈ Fin → (card‘(𝐵𝑚)) ∈ ω)
103102adantl 482 . . . . . . . . . . . . . . 15 (( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) ∧ (𝐵𝑚) ∈ Fin) → (card‘(𝐵𝑚)) ∈ ω)
104 cardid2 8723 . . . . . . . . . . . . . . . . . 18 ( 𝑘𝑚 (𝐵𝑘) ∈ dom card → (card‘ 𝑘𝑚 (𝐵𝑘)) ≈ 𝑘𝑚 (𝐵𝑘))
10593, 94, 1043syl 18 . . . . . . . . . . . . . . . . 17 (( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) ∧ (𝐵𝑚) ∈ Fin) → (card‘ 𝑘𝑚 (𝐵𝑘)) ≈ 𝑘𝑚 (𝐵𝑘))
106 simpl 473 . . . . . . . . . . . . . . . . 17 (( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) ∧ (𝐵𝑚) ∈ Fin) → 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚))
107 cardid2 8723 . . . . . . . . . . . . . . . . . . 19 ((𝐵𝑚) ∈ dom card → (card‘(𝐵𝑚)) ≈ (𝐵𝑚))
108 ensym 7949 . . . . . . . . . . . . . . . . . . 19 ((card‘(𝐵𝑚)) ≈ (𝐵𝑚) → (𝐵𝑚) ≈ (card‘(𝐵𝑚)))
10996, 107, 1083syl 18 . . . . . . . . . . . . . . . . . 18 ((𝐵𝑚) ∈ Fin → (𝐵𝑚) ≈ (card‘(𝐵𝑚)))
110109adantl 482 . . . . . . . . . . . . . . . . 17 (( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) ∧ (𝐵𝑚) ∈ Fin) → (𝐵𝑚) ≈ (card‘(𝐵𝑚)))
111 ensdomtr 8040 . . . . . . . . . . . . . . . . . 18 (((card‘ 𝑘𝑚 (𝐵𝑘)) ≈ 𝑘𝑚 (𝐵𝑘) ∧ 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚)) → (card‘ 𝑘𝑚 (𝐵𝑘)) ≺ (𝐵𝑚))
112 sdomentr 8038 . . . . . . . . . . . . . . . . . 18 (((card‘ 𝑘𝑚 (𝐵𝑘)) ≺ (𝐵𝑚) ∧ (𝐵𝑚) ≈ (card‘(𝐵𝑚))) → (card‘ 𝑘𝑚 (𝐵𝑘)) ≺ (card‘(𝐵𝑚)))
113111, 112sylan 488 . . . . . . . . . . . . . . . . 17 ((((card‘ 𝑘𝑚 (𝐵𝑘)) ≈ 𝑘𝑚 (𝐵𝑘) ∧ 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚)) ∧ (𝐵𝑚) ≈ (card‘(𝐵𝑚))) → (card‘ 𝑘𝑚 (𝐵𝑘)) ≺ (card‘(𝐵𝑚)))
114105, 106, 110, 113syl21anc 1322 . . . . . . . . . . . . . . . 16 (( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) ∧ (𝐵𝑚) ∈ Fin) → (card‘ 𝑘𝑚 (𝐵𝑘)) ≺ (card‘(𝐵𝑚)))
115 cardon 8714 . . . . . . . . . . . . . . . . . 18 (card‘ 𝑘𝑚 (𝐵𝑘)) ∈ On
116 cardon 8714 . . . . . . . . . . . . . . . . . . 19 (card‘(𝐵𝑚)) ∈ On
117 onenon 8719 . . . . . . . . . . . . . . . . . . 19 ((card‘(𝐵𝑚)) ∈ On → (card‘(𝐵𝑚)) ∈ dom card)
118116, 117ax-mp 5 . . . . . . . . . . . . . . . . . 18 (card‘(𝐵𝑚)) ∈ dom card
119 cardsdomel 8744 . . . . . . . . . . . . . . . . . 18 (((card‘ 𝑘𝑚 (𝐵𝑘)) ∈ On ∧ (card‘(𝐵𝑚)) ∈ dom card) → ((card‘ 𝑘𝑚 (𝐵𝑘)) ≺ (card‘(𝐵𝑚)) ↔ (card‘ 𝑘𝑚 (𝐵𝑘)) ∈ (card‘(card‘(𝐵𝑚)))))
120115, 118, 119mp2an 707 . . . . . . . . . . . . . . . . 17 ((card‘ 𝑘𝑚 (𝐵𝑘)) ≺ (card‘(𝐵𝑚)) ↔ (card‘ 𝑘𝑚 (𝐵𝑘)) ∈ (card‘(card‘(𝐵𝑚))))
121 cardidm 8729 . . . . . . . . . . . . . . . . . 18 (card‘(card‘(𝐵𝑚))) = (card‘(𝐵𝑚))
122121eleq2i 2690 . . . . . . . . . . . . . . . . 17 ((card‘ 𝑘𝑚 (𝐵𝑘)) ∈ (card‘(card‘(𝐵𝑚))) ↔ (card‘ 𝑘𝑚 (𝐵𝑘)) ∈ (card‘(𝐵𝑚)))
123120, 122bitri 264 . . . . . . . . . . . . . . . 16 ((card‘ 𝑘𝑚 (𝐵𝑘)) ≺ (card‘(𝐵𝑚)) ↔ (card‘ 𝑘𝑚 (𝐵𝑘)) ∈ (card‘(𝐵𝑚)))
124114, 123sylib 208 . . . . . . . . . . . . . . 15 (( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) ∧ (𝐵𝑚) ∈ Fin) → (card‘ 𝑘𝑚 (𝐵𝑘)) ∈ (card‘(𝐵𝑚)))
125 nnaordr 7645 . . . . . . . . . . . . . . . 16 (((card‘ 𝑘𝑚 (𝐵𝑘)) ∈ ω ∧ (card‘(𝐵𝑚)) ∈ ω ∧ (card‘(𝐵𝑚)) ∈ ω) → ((card‘ 𝑘𝑚 (𝐵𝑘)) ∈ (card‘(𝐵𝑚)) ↔ ((card‘ 𝑘𝑚 (𝐵𝑘)) +𝑜 (card‘(𝐵𝑚))) ∈ ((card‘(𝐵𝑚)) +𝑜 (card‘(𝐵𝑚)))))
126125biimpa 501 . . . . . . . . . . . . . . 15 ((((card‘ 𝑘𝑚 (𝐵𝑘)) ∈ ω ∧ (card‘(𝐵𝑚)) ∈ ω ∧ (card‘(𝐵𝑚)) ∈ ω) ∧ (card‘ 𝑘𝑚 (𝐵𝑘)) ∈ (card‘(𝐵𝑚))) → ((card‘ 𝑘𝑚 (𝐵𝑘)) +𝑜 (card‘(𝐵𝑚))) ∈ ((card‘(𝐵𝑚)) +𝑜 (card‘(𝐵𝑚))))
127101, 103, 103, 124, 126syl31anc 1326 . . . . . . . . . . . . . 14 (( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) ∧ (𝐵𝑚) ∈ Fin) → ((card‘ 𝑘𝑚 (𝐵𝑘)) +𝑜 (card‘(𝐵𝑚))) ∈ ((card‘(𝐵𝑚)) +𝑜 (card‘(𝐵𝑚))))
128 nnacl 7636 . . . . . . . . . . . . . . . . 17 (((card‘(𝐵𝑚)) ∈ ω ∧ (card‘(𝐵𝑚)) ∈ ω) → ((card‘(𝐵𝑚)) +𝑜 (card‘(𝐵𝑚))) ∈ ω)
129102, 102, 128syl2anc 692 . . . . . . . . . . . . . . . 16 ((𝐵𝑚) ∈ Fin → ((card‘(𝐵𝑚)) +𝑜 (card‘(𝐵𝑚))) ∈ ω)
130 cardnn 8733 . . . . . . . . . . . . . . . 16 (((card‘(𝐵𝑚)) +𝑜 (card‘(𝐵𝑚))) ∈ ω → (card‘((card‘(𝐵𝑚)) +𝑜 (card‘(𝐵𝑚)))) = ((card‘(𝐵𝑚)) +𝑜 (card‘(𝐵𝑚))))
131129, 130syl 17 . . . . . . . . . . . . . . 15 ((𝐵𝑚) ∈ Fin → (card‘((card‘(𝐵𝑚)) +𝑜 (card‘(𝐵𝑚)))) = ((card‘(𝐵𝑚)) +𝑜 (card‘(𝐵𝑚))))
132131adantl 482 . . . . . . . . . . . . . 14 (( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) ∧ (𝐵𝑚) ∈ Fin) → (card‘((card‘(𝐵𝑚)) +𝑜 (card‘(𝐵𝑚)))) = ((card‘(𝐵𝑚)) +𝑜 (card‘(𝐵𝑚))))
133127, 132eleqtrrd 2701 . . . . . . . . . . . . 13 (( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) ∧ (𝐵𝑚) ∈ Fin) → ((card‘ 𝑘𝑚 (𝐵𝑘)) +𝑜 (card‘(𝐵𝑚))) ∈ (card‘((card‘(𝐵𝑚)) +𝑜 (card‘(𝐵𝑚)))))
134 cardsdomelir 8743 . . . . . . . . . . . . 13 (((card‘ 𝑘𝑚 (𝐵𝑘)) +𝑜 (card‘(𝐵𝑚))) ∈ (card‘((card‘(𝐵𝑚)) +𝑜 (card‘(𝐵𝑚)))) → ((card‘ 𝑘𝑚 (𝐵𝑘)) +𝑜 (card‘(𝐵𝑚))) ≺ ((card‘(𝐵𝑚)) +𝑜 (card‘(𝐵𝑚))))
135133, 134syl 17 . . . . . . . . . . . 12 (( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) ∧ (𝐵𝑚) ∈ Fin) → ((card‘ 𝑘𝑚 (𝐵𝑘)) +𝑜 (card‘(𝐵𝑚))) ≺ ((card‘(𝐵𝑚)) +𝑜 (card‘(𝐵𝑚))))
136 ensdomtr 8040 . . . . . . . . . . . 12 ((( 𝑘𝑚 (𝐵𝑘) +𝑐 (𝐵𝑚)) ≈ ((card‘ 𝑘𝑚 (𝐵𝑘)) +𝑜 (card‘(𝐵𝑚))) ∧ ((card‘ 𝑘𝑚 (𝐵𝑘)) +𝑜 (card‘(𝐵𝑚))) ≺ ((card‘(𝐵𝑚)) +𝑜 (card‘(𝐵𝑚)))) → ( 𝑘𝑚 (𝐵𝑘) +𝑐 (𝐵𝑚)) ≺ ((card‘(𝐵𝑚)) +𝑜 (card‘(𝐵𝑚))))
13799, 135, 136syl2anc 692 . . . . . . . . . . 11 (( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) ∧ (𝐵𝑚) ∈ Fin) → ( 𝑘𝑚 (𝐵𝑘) +𝑐 (𝐵𝑚)) ≺ ((card‘(𝐵𝑚)) +𝑜 (card‘(𝐵𝑚))))
138 cardacda 8964 . . . . . . . . . . . . . 14 (((𝐵𝑚) ∈ dom card ∧ (𝐵𝑚) ∈ dom card) → ((𝐵𝑚) +𝑐 (𝐵𝑚)) ≈ ((card‘(𝐵𝑚)) +𝑜 (card‘(𝐵𝑚))))
13996, 96, 138syl2anc 692 . . . . . . . . . . . . 13 ((𝐵𝑚) ∈ Fin → ((𝐵𝑚) +𝑐 (𝐵𝑚)) ≈ ((card‘(𝐵𝑚)) +𝑜 (card‘(𝐵𝑚))))
140139ensymd 7951 . . . . . . . . . . . 12 ((𝐵𝑚) ∈ Fin → ((card‘(𝐵𝑚)) +𝑜 (card‘(𝐵𝑚))) ≈ ((𝐵𝑚) +𝑐 (𝐵𝑚)))
141140adantl 482 . . . . . . . . . . 11 (( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) ∧ (𝐵𝑚) ∈ Fin) → ((card‘(𝐵𝑚)) +𝑜 (card‘(𝐵𝑚))) ≈ ((𝐵𝑚) +𝑐 (𝐵𝑚)))
142 sdomentr 8038 . . . . . . . . . . 11 ((( 𝑘𝑚 (𝐵𝑘) +𝑐 (𝐵𝑚)) ≺ ((card‘(𝐵𝑚)) +𝑜 (card‘(𝐵𝑚))) ∧ ((card‘(𝐵𝑚)) +𝑜 (card‘(𝐵𝑚))) ≈ ((𝐵𝑚) +𝑐 (𝐵𝑚))) → ( 𝑘𝑚 (𝐵𝑘) +𝑐 (𝐵𝑚)) ≺ ((𝐵𝑚) +𝑐 (𝐵𝑚)))
143137, 141, 142syl2anc 692 . . . . . . . . . 10 (( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) ∧ (𝐵𝑚) ∈ Fin) → ( 𝑘𝑚 (𝐵𝑘) +𝑐 (𝐵𝑚)) ≺ ((𝐵𝑚) +𝑐 (𝐵𝑚)))
144 domsdomtr 8039 . . . . . . . . . 10 (( 𝑘 ∈ suc 𝑚(𝐵𝑘) ≼ ( 𝑘𝑚 (𝐵𝑘) +𝑐 (𝐵𝑚)) ∧ ( 𝑘𝑚 (𝐵𝑘) +𝑐 (𝐵𝑚)) ≺ ((𝐵𝑚) +𝑐 (𝐵𝑚))) → 𝑘 ∈ suc 𝑚(𝐵𝑘) ≺ ((𝐵𝑚) +𝑐 (𝐵𝑚)))
14589, 143, 144sylancr 694 . . . . . . . . 9 (( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) ∧ (𝐵𝑚) ∈ Fin) → 𝑘 ∈ suc 𝑚(𝐵𝑘) ≺ ((𝐵𝑚) +𝑐 (𝐵𝑚)))
146145expcom 451 . . . . . . . 8 ((𝐵𝑚) ∈ Fin → ( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) → 𝑘 ∈ suc 𝑚(𝐵𝑘) ≺ ((𝐵𝑚) +𝑐 (𝐵𝑚))))
14782, 146syl 17 . . . . . . 7 ((𝑚 ∈ ω ∧ ∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘) → ( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) → 𝑘 ∈ suc 𝑚(𝐵𝑘) ≺ ((𝐵𝑚) +𝑐 (𝐵𝑚))))
148 sdomentr 8038 . . . . . . . 8 (( 𝑘 ∈ suc 𝑚(𝐵𝑘) ≺ ((𝐵𝑚) +𝑐 (𝐵𝑚)) ∧ ((𝐵𝑚) +𝑐 (𝐵𝑚)) ≈ (𝐵‘suc 𝑚)) → 𝑘 ∈ suc 𝑚(𝐵𝑘) ≺ (𝐵‘suc 𝑚))
149148expcom 451 . . . . . . 7 (((𝐵𝑚) +𝑐 (𝐵𝑚)) ≈ (𝐵‘suc 𝑚) → ( 𝑘 ∈ suc 𝑚(𝐵𝑘) ≺ ((𝐵𝑚) +𝑐 (𝐵𝑚)) → 𝑘 ∈ suc 𝑚(𝐵𝑘) ≺ (𝐵‘suc 𝑚)))
15072, 147, 149sylsyld 61 . . . . . 6 ((𝑚 ∈ ω ∧ ∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘) → ( 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚) → 𝑘 ∈ suc 𝑚(𝐵𝑘) ≺ (𝐵‘suc 𝑚)))
15138, 150syld 47 . . . . 5 ((𝑚 ∈ ω ∧ ∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘) → ((∀𝑘 ∈ suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚)) → 𝑘 ∈ suc 𝑚(𝐵𝑘) ≺ (𝐵‘suc 𝑚)))
152151ex 450 . . . 4 (𝑚 ∈ ω → (∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘 → ((∀𝑘 ∈ suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚)) → 𝑘 ∈ suc 𝑚(𝐵𝑘) ≺ (𝐵‘suc 𝑚))))
153152com23 86 . . 3 (𝑚 ∈ ω → ((∀𝑘 ∈ suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘 𝑘𝑚 (𝐵𝑘) ≺ (𝐵𝑚)) → (∀𝑘 ∈ suc suc 𝑚(𝐵𝑘) ≈ 𝒫 𝑘 𝑘 ∈ suc 𝑚(𝐵𝑘) ≺ (𝐵‘suc 𝑚))))
1546, 12, 18, 32, 153finds1 7042 . 2 (𝑛 ∈ ω → (∀𝑘 ∈ suc 𝑛(𝐵𝑘) ≈ 𝒫 𝑘 𝑘𝑛 (𝐵𝑘) ≺ (𝐵𝑛)))
155154imp 445 1 ((𝑛 ∈ ω ∧ ∀𝑘 ∈ suc 𝑛(𝐵𝑘) ≈ 𝒫 𝑘) → 𝑘𝑛 (𝐵𝑘) ≺ (𝐵𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  Vcvv 3186  cun 3553  wss 3555  c0 3891  𝒫 cpw 4130   ciun 4485   class class class wbr 4613  dom cdm 5074  Ord word 5681  Oncon0 5682  suc csuc 5684  cfv 5847  (class class class)co 6604  ωcom 7012  1𝑜c1o 7498   +𝑜 coa 7502  cen 7896  cdom 7897  csdm 7898  Fincfn 7899  cardccrd 8705   +𝑐 ccda 8933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-cda 8934
This theorem is referenced by:  domtriomlem  9208
  Copyright terms: Public domain W3C validator