Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwsiga Structured version   Visualization version   GIF version

Theorem pwsiga 30473
Description: Any power set forms a sigma-algebra. (Contributed by Thierry Arnoux, 13-Sep-2016.) (Revised by Thierry Arnoux, 24-Oct-2016.)
Assertion
Ref Expression
pwsiga (𝑂𝑉 → 𝒫 𝑂 ∈ (sigAlgebra‘𝑂))

Proof of Theorem pwsiga
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssid 3753 . . 3 𝒫 𝑂 ⊆ 𝒫 𝑂
21a1i 11 . 2 (𝑂𝑉 → 𝒫 𝑂 ⊆ 𝒫 𝑂)
3 pwidg 4305 . . 3 (𝑂𝑉𝑂 ∈ 𝒫 𝑂)
4 difss 3868 . . . . . 6 (𝑂𝑥) ⊆ 𝑂
5 elpw2g 4964 . . . . . 6 (𝑂𝑉 → ((𝑂𝑥) ∈ 𝒫 𝑂 ↔ (𝑂𝑥) ⊆ 𝑂))
64, 5mpbiri 248 . . . . 5 (𝑂𝑉 → (𝑂𝑥) ∈ 𝒫 𝑂)
76a1d 25 . . . 4 (𝑂𝑉 → (𝑥 ∈ 𝒫 𝑂 → (𝑂𝑥) ∈ 𝒫 𝑂))
87ralrimiv 3091 . . 3 (𝑂𝑉 → ∀𝑥 ∈ 𝒫 𝑂(𝑂𝑥) ∈ 𝒫 𝑂)
9 sspwuni 4751 . . . . . . . 8 (𝑥 ⊆ 𝒫 𝑂 𝑥𝑂)
10 vuniex 7107 . . . . . . . . 9 𝑥 ∈ V
1110elpw 4296 . . . . . . . 8 ( 𝑥 ∈ 𝒫 𝑂 𝑥𝑂)
129, 11bitr4i 267 . . . . . . 7 (𝑥 ⊆ 𝒫 𝑂 𝑥 ∈ 𝒫 𝑂)
1312biimpi 206 . . . . . 6 (𝑥 ⊆ 𝒫 𝑂 𝑥 ∈ 𝒫 𝑂)
1413a1d 25 . . . . 5 (𝑥 ⊆ 𝒫 𝑂 → (𝑥 ≼ ω → 𝑥 ∈ 𝒫 𝑂))
15 elpwi 4300 . . . . . 6 (𝑥 ∈ 𝒫 𝒫 𝑂𝑥 ⊆ 𝒫 𝑂)
1615imim1i 63 . . . . 5 ((𝑥 ⊆ 𝒫 𝑂 → (𝑥 ≼ ω → 𝑥 ∈ 𝒫 𝑂)) → (𝑥 ∈ 𝒫 𝒫 𝑂 → (𝑥 ≼ ω → 𝑥 ∈ 𝒫 𝑂)))
1714, 16mp1i 13 . . . 4 (𝑂𝑉 → (𝑥 ∈ 𝒫 𝒫 𝑂 → (𝑥 ≼ ω → 𝑥 ∈ 𝒫 𝑂)))
1817ralrimiv 3091 . . 3 (𝑂𝑉 → ∀𝑥 ∈ 𝒫 𝒫 𝑂(𝑥 ≼ ω → 𝑥 ∈ 𝒫 𝑂))
193, 8, 183jca 1403 . 2 (𝑂𝑉 → (𝑂 ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝑂(𝑂𝑥) ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝒫 𝑂(𝑥 ≼ ω → 𝑥 ∈ 𝒫 𝑂)))
20 pwexg 4987 . . 3 (𝑂𝑉 → 𝒫 𝑂 ∈ V)
21 issiga 30454 . . 3 (𝒫 𝑂 ∈ V → (𝒫 𝑂 ∈ (sigAlgebra‘𝑂) ↔ (𝒫 𝑂 ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝑂(𝑂𝑥) ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝒫 𝑂(𝑥 ≼ ω → 𝑥 ∈ 𝒫 𝑂)))))
2220, 21syl 17 . 2 (𝑂𝑉 → (𝒫 𝑂 ∈ (sigAlgebra‘𝑂) ↔ (𝒫 𝑂 ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝑂(𝑂𝑥) ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝒫 𝑂(𝑥 ≼ ω → 𝑥 ∈ 𝒫 𝑂)))))
232, 19, 22mpbir2and 995 1 (𝑂𝑉 → 𝒫 𝑂 ∈ (sigAlgebra‘𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072  wcel 2127  wral 3038  Vcvv 3328  cdif 3700  wss 3703  𝒫 cpw 4290   cuni 4576   class class class wbr 4792  cfv 6037  ωcom 7218  cdom 8107  sigAlgebracsiga 30450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1623  df-fal 1626  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-ral 3043  df-rex 3044  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-op 4316  df-uni 4577  df-br 4793  df-opab 4853  df-mpt 4870  df-id 5162  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-iota 6000  df-fun 6039  df-fv 6045  df-siga 30451
This theorem is referenced by:  sigagenval  30483  dmsigagen  30487  ldsysgenld  30503  pwcntmeas  30570  ddemeas  30579  mbfmcnt  30610
  Copyright terms: Public domain W3C validator