MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsle Structured version   Visualization version   GIF version

Theorem pwsle 16073
Description: Ordering in a structure power. (Contributed by Mario Carneiro, 16-Aug-2015.)
Hypotheses
Ref Expression
pwsle.y 𝑌 = (𝑅s 𝐼)
pwsle.v 𝐵 = (Base‘𝑌)
pwsle.o 𝑂 = (le‘𝑅)
pwsle.l = (le‘𝑌)
Assertion
Ref Expression
pwsle ((𝑅𝑉𝐼𝑊) → = ( ∘𝑟 𝑂 ∩ (𝐵 × 𝐵)))

Proof of Theorem pwsle
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3189 . . . . . . 7 𝑓 ∈ V
2 vex 3189 . . . . . . 7 𝑔 ∈ V
31, 2prss 4319 . . . . . 6 ((𝑓𝐵𝑔𝐵) ↔ {𝑓, 𝑔} ⊆ 𝐵)
4 pwsle.v . . . . . . . 8 𝐵 = (Base‘𝑌)
5 pwsle.y . . . . . . . . . 10 𝑌 = (𝑅s 𝐼)
6 eqid 2621 . . . . . . . . . 10 (Scalar‘𝑅) = (Scalar‘𝑅)
75, 6pwsval 16067 . . . . . . . . 9 ((𝑅𝑉𝐼𝑊) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
87fveq2d 6152 . . . . . . . 8 ((𝑅𝑉𝐼𝑊) → (Base‘𝑌) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
94, 8syl5eq 2667 . . . . . . 7 ((𝑅𝑉𝐼𝑊) → 𝐵 = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
109sseq2d 3612 . . . . . 6 ((𝑅𝑉𝐼𝑊) → ({𝑓, 𝑔} ⊆ 𝐵 ↔ {𝑓, 𝑔} ⊆ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))))
113, 10syl5bb 272 . . . . 5 ((𝑅𝑉𝐼𝑊) → ((𝑓𝐵𝑔𝐵) ↔ {𝑓, 𝑔} ⊆ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))))
1211anbi1d 740 . . . 4 ((𝑅𝑉𝐼𝑊) → (((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥)) ↔ ({𝑓, 𝑔} ⊆ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥))))
13 simpll 789 . . . . . . . . . . . 12 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → 𝑅𝑉)
14 fvconst2g 6421 . . . . . . . . . . . 12 ((𝑅𝑉𝑥𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅)
1513, 14sylan 488 . . . . . . . . . . 11 ((((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅)
1615fveq2d 6152 . . . . . . . . . 10 ((((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → (le‘((𝐼 × {𝑅})‘𝑥)) = (le‘𝑅))
17 pwsle.o . . . . . . . . . 10 𝑂 = (le‘𝑅)
1816, 17syl6eqr 2673 . . . . . . . . 9 ((((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → (le‘((𝐼 × {𝑅})‘𝑥)) = 𝑂)
1918breqd 4624 . . . . . . . 8 ((((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → ((𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥) ↔ (𝑓𝑥)𝑂(𝑔𝑥)))
2019ralbidva 2979 . . . . . . 7 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → (∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥) ↔ ∀𝑥𝐼 (𝑓𝑥)𝑂(𝑔𝑥)))
21 eqid 2621 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
22 simplr 791 . . . . . . . . . 10 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → 𝐼𝑊)
23 simprl 793 . . . . . . . . . 10 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → 𝑓𝐵)
245, 21, 4, 13, 22, 23pwselbas 16070 . . . . . . . . 9 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → 𝑓:𝐼⟶(Base‘𝑅))
25 ffn 6002 . . . . . . . . 9 (𝑓:𝐼⟶(Base‘𝑅) → 𝑓 Fn 𝐼)
2624, 25syl 17 . . . . . . . 8 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → 𝑓 Fn 𝐼)
27 simprr 795 . . . . . . . . . 10 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → 𝑔𝐵)
285, 21, 4, 13, 22, 27pwselbas 16070 . . . . . . . . 9 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → 𝑔:𝐼⟶(Base‘𝑅))
29 ffn 6002 . . . . . . . . 9 (𝑔:𝐼⟶(Base‘𝑅) → 𝑔 Fn 𝐼)
3028, 29syl 17 . . . . . . . 8 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → 𝑔 Fn 𝐼)
31 inidm 3800 . . . . . . . 8 (𝐼𝐼) = 𝐼
32 eqidd 2622 . . . . . . . 8 ((((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → (𝑓𝑥) = (𝑓𝑥))
33 eqidd 2622 . . . . . . . 8 ((((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → (𝑔𝑥) = (𝑔𝑥))
3426, 30, 22, 22, 31, 32, 33ofrfval 6858 . . . . . . 7 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → (𝑓𝑟 𝑂𝑔 ↔ ∀𝑥𝐼 (𝑓𝑥)𝑂(𝑔𝑥)))
3520, 34bitr4d 271 . . . . . 6 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → (∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥) ↔ 𝑓𝑟 𝑂𝑔))
3635pm5.32da 672 . . . . 5 ((𝑅𝑉𝐼𝑊) → (((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥)) ↔ ((𝑓𝐵𝑔𝐵) ∧ 𝑓𝑟 𝑂𝑔)))
37 brinxp2 5141 . . . . . 6 (𝑓( ∘𝑟 𝑂 ∩ (𝐵 × 𝐵))𝑔 ↔ (𝑓𝐵𝑔𝐵𝑓𝑟 𝑂𝑔))
38 df-3an 1038 . . . . . 6 ((𝑓𝐵𝑔𝐵𝑓𝑟 𝑂𝑔) ↔ ((𝑓𝐵𝑔𝐵) ∧ 𝑓𝑟 𝑂𝑔))
3937, 38bitri 264 . . . . 5 (𝑓( ∘𝑟 𝑂 ∩ (𝐵 × 𝐵))𝑔 ↔ ((𝑓𝐵𝑔𝐵) ∧ 𝑓𝑟 𝑂𝑔))
4036, 39syl6bbr 278 . . . 4 ((𝑅𝑉𝐼𝑊) → (((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥)) ↔ 𝑓( ∘𝑟 𝑂 ∩ (𝐵 × 𝐵))𝑔))
4112, 40bitr3d 270 . . 3 ((𝑅𝑉𝐼𝑊) → (({𝑓, 𝑔} ⊆ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥)) ↔ 𝑓( ∘𝑟 𝑂 ∩ (𝐵 × 𝐵))𝑔))
4241opabbidv 4678 . 2 ((𝑅𝑉𝐼𝑊) → {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥))} = {⟨𝑓, 𝑔⟩ ∣ 𝑓( ∘𝑟 𝑂 ∩ (𝐵 × 𝐵))𝑔})
43 pwsle.l . . . 4 = (le‘𝑌)
447fveq2d 6152 . . . 4 ((𝑅𝑉𝐼𝑊) → (le‘𝑌) = (le‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
4543, 44syl5eq 2667 . . 3 ((𝑅𝑉𝐼𝑊) → = (le‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
46 eqid 2621 . . . 4 ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))
47 fvex 6158 . . . . 5 (Scalar‘𝑅) ∈ V
4847a1i 11 . . . 4 ((𝑅𝑉𝐼𝑊) → (Scalar‘𝑅) ∈ V)
49 simpr 477 . . . . 5 ((𝑅𝑉𝐼𝑊) → 𝐼𝑊)
50 snex 4869 . . . . 5 {𝑅} ∈ V
51 xpexg 6913 . . . . 5 ((𝐼𝑊 ∧ {𝑅} ∈ V) → (𝐼 × {𝑅}) ∈ V)
5249, 50, 51sylancl 693 . . . 4 ((𝑅𝑉𝐼𝑊) → (𝐼 × {𝑅}) ∈ V)
53 eqid 2621 . . . 4 (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
54 snnzg 4278 . . . . . 6 (𝑅𝑉 → {𝑅} ≠ ∅)
5554adantr 481 . . . . 5 ((𝑅𝑉𝐼𝑊) → {𝑅} ≠ ∅)
56 dmxp 5304 . . . . 5 ({𝑅} ≠ ∅ → dom (𝐼 × {𝑅}) = 𝐼)
5755, 56syl 17 . . . 4 ((𝑅𝑉𝐼𝑊) → dom (𝐼 × {𝑅}) = 𝐼)
58 eqid 2621 . . . 4 (le‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (le‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
5946, 48, 52, 53, 57, 58prdsle 16043 . . 3 ((𝑅𝑉𝐼𝑊) → (le‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥))})
6045, 59eqtrd 2655 . 2 ((𝑅𝑉𝐼𝑊) → = {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥))})
61 inss2 3812 . . . . 5 ( ∘𝑟 𝑂 ∩ (𝐵 × 𝐵)) ⊆ (𝐵 × 𝐵)
62 relxp 5188 . . . . 5 Rel (𝐵 × 𝐵)
63 relss 5167 . . . . 5 (( ∘𝑟 𝑂 ∩ (𝐵 × 𝐵)) ⊆ (𝐵 × 𝐵) → (Rel (𝐵 × 𝐵) → Rel ( ∘𝑟 𝑂 ∩ (𝐵 × 𝐵))))
6461, 62, 63mp2 9 . . . 4 Rel ( ∘𝑟 𝑂 ∩ (𝐵 × 𝐵))
6564a1i 11 . . 3 ((𝑅𝑉𝐼𝑊) → Rel ( ∘𝑟 𝑂 ∩ (𝐵 × 𝐵)))
66 dfrel4v 5543 . . 3 (Rel ( ∘𝑟 𝑂 ∩ (𝐵 × 𝐵)) ↔ ( ∘𝑟 𝑂 ∩ (𝐵 × 𝐵)) = {⟨𝑓, 𝑔⟩ ∣ 𝑓( ∘𝑟 𝑂 ∩ (𝐵 × 𝐵))𝑔})
6765, 66sylib 208 . 2 ((𝑅𝑉𝐼𝑊) → ( ∘𝑟 𝑂 ∩ (𝐵 × 𝐵)) = {⟨𝑓, 𝑔⟩ ∣ 𝑓( ∘𝑟 𝑂 ∩ (𝐵 × 𝐵))𝑔})
6842, 60, 673eqtr4d 2665 1 ((𝑅𝑉𝐼𝑊) → = ( ∘𝑟 𝑂 ∩ (𝐵 × 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2907  Vcvv 3186  cin 3554  wss 3555  c0 3891  {csn 4148  {cpr 4150   class class class wbr 4613  {copab 4672   × cxp 5072  dom cdm 5074  Rel wrel 5079   Fn wfn 5842  wf 5843  cfv 5847  (class class class)co 6604  𝑟 cofr 6849  Basecbs 15781  Scalarcsca 15865  lecple 15869  Xscprds 16027  s cpws 16028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-ofr 6851  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-fz 12269  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-plusg 15875  df-mulr 15876  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-hom 15887  df-cco 15888  df-prds 16029  df-pws 16031
This theorem is referenced by:  pwsleval  16074
  Copyright terms: Public domain W3C validator