MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsleval Structured version   Visualization version   GIF version

Theorem pwsleval 16768
Description: Ordering in a structure power. (Contributed by Mario Carneiro, 16-Aug-2015.)
Hypotheses
Ref Expression
pwsle.y 𝑌 = (𝑅s 𝐼)
pwsle.v 𝐵 = (Base‘𝑌)
pwsle.o 𝑂 = (le‘𝑅)
pwsle.l = (le‘𝑌)
pwsleval.r (𝜑𝑅𝑉)
pwsleval.i (𝜑𝐼𝑊)
pwsleval.a (𝜑𝐹𝐵)
pwsleval.b (𝜑𝐺𝐵)
Assertion
Ref Expression
pwsleval (𝜑 → (𝐹 𝐺 ↔ ∀𝑥𝐼 (𝐹𝑥)𝑂(𝐺𝑥)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐼   𝑥,𝑂   𝑥,𝑅   𝑥,𝑉   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥   𝑥,𝑊
Allowed substitution hints:   (𝑥)   𝑌(𝑥)

Proof of Theorem pwsleval
StepHypRef Expression
1 pwsleval.r . . . 4 (𝜑𝑅𝑉)
2 pwsleval.i . . . 4 (𝜑𝐼𝑊)
3 pwsle.y . . . . 5 𝑌 = (𝑅s 𝐼)
4 pwsle.v . . . . 5 𝐵 = (Base‘𝑌)
5 pwsle.o . . . . 5 𝑂 = (le‘𝑅)
6 pwsle.l . . . . 5 = (le‘𝑌)
73, 4, 5, 6pwsle 16767 . . . 4 ((𝑅𝑉𝐼𝑊) → = ( ∘r 𝑂 ∩ (𝐵 × 𝐵)))
81, 2, 7syl2anc 586 . . 3 (𝜑 = ( ∘r 𝑂 ∩ (𝐵 × 𝐵)))
98breqd 5079 . 2 (𝜑 → (𝐹 𝐺𝐹( ∘r 𝑂 ∩ (𝐵 × 𝐵))𝐺))
10 pwsleval.a . . 3 (𝜑𝐹𝐵)
11 pwsleval.b . . 3 (𝜑𝐺𝐵)
12 brinxp 5632 . . 3 ((𝐹𝐵𝐺𝐵) → (𝐹r 𝑂𝐺𝐹( ∘r 𝑂 ∩ (𝐵 × 𝐵))𝐺))
1310, 11, 12syl2anc 586 . 2 (𝜑 → (𝐹r 𝑂𝐺𝐹( ∘r 𝑂 ∩ (𝐵 × 𝐵))𝐺))
14 eqid 2823 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
153, 14, 4, 1, 2, 10pwselbas 16764 . . . 4 (𝜑𝐹:𝐼⟶(Base‘𝑅))
1615ffnd 6517 . . 3 (𝜑𝐹 Fn 𝐼)
173, 14, 4, 1, 2, 11pwselbas 16764 . . . 4 (𝜑𝐺:𝐼⟶(Base‘𝑅))
1817ffnd 6517 . . 3 (𝜑𝐺 Fn 𝐼)
19 inidm 4197 . . 3 (𝐼𝐼) = 𝐼
20 eqidd 2824 . . 3 ((𝜑𝑥𝐼) → (𝐹𝑥) = (𝐹𝑥))
21 eqidd 2824 . . 3 ((𝜑𝑥𝐼) → (𝐺𝑥) = (𝐺𝑥))
2216, 18, 2, 2, 19, 20, 21ofrfval 7419 . 2 (𝜑 → (𝐹r 𝑂𝐺 ↔ ∀𝑥𝐼 (𝐹𝑥)𝑂(𝐺𝑥)))
239, 13, 223bitr2d 309 1 (𝜑 → (𝐹 𝐺 ↔ ∀𝑥𝐼 (𝐹𝑥)𝑂(𝐺𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3140  cin 3937   class class class wbr 5068   × cxp 5555  cfv 6357  (class class class)co 7158  r cofr 7410  Basecbs 16485  lecple 16574  s cpws 16722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-ofr 7412  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-plusg 16580  df-mulr 16581  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-hom 16591  df-cco 16592  df-prds 16723  df-pws 16725
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator