![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwsmulg | Structured version Visualization version GIF version |
Description: Value of a group multiple in a structure power. (Contributed by Mario Carneiro, 15-Jun-2015.) |
Ref | Expression |
---|---|
pwsmulg.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
pwsmulg.b | ⊢ 𝐵 = (Base‘𝑌) |
pwsmulg.s | ⊢ ∙ = (.g‘𝑌) |
pwsmulg.t | ⊢ · = (.g‘𝑅) |
Ref | Expression |
---|---|
pwsmulg | ⊢ (((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) ∧ (𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼)) → ((𝑁 ∙ 𝑋)‘𝐴) = (𝑁 · (𝑋‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 807 | . . . 4 ⊢ (((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) ∧ (𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼)) → 𝑅 ∈ Mnd) | |
2 | simplr 809 | . . . 4 ⊢ (((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) ∧ (𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼)) → 𝐼 ∈ 𝑉) | |
3 | simpr3 1238 | . . . 4 ⊢ (((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) ∧ (𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼)) → 𝐴 ∈ 𝐼) | |
4 | pwsmulg.y | . . . . 5 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
5 | pwsmulg.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑌) | |
6 | 4, 5 | pwspjmhm 17589 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴)) ∈ (𝑌 MndHom 𝑅)) |
7 | 1, 2, 3, 6 | syl3anc 1477 | . . 3 ⊢ (((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) ∧ (𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼)) → (𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴)) ∈ (𝑌 MndHom 𝑅)) |
8 | simpr1 1234 | . . 3 ⊢ (((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) ∧ (𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼)) → 𝑁 ∈ ℕ0) | |
9 | simpr2 1236 | . . 3 ⊢ (((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) ∧ (𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼)) → 𝑋 ∈ 𝐵) | |
10 | pwsmulg.s | . . . 4 ⊢ ∙ = (.g‘𝑌) | |
11 | pwsmulg.t | . . . 4 ⊢ · = (.g‘𝑅) | |
12 | 5, 10, 11 | mhmmulg 17804 | . . 3 ⊢ (((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴)) ∈ (𝑌 MndHom 𝑅) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘(𝑁 ∙ 𝑋)) = (𝑁 · ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑋))) |
13 | 7, 8, 9, 12 | syl3anc 1477 | . 2 ⊢ (((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) ∧ (𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼)) → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘(𝑁 ∙ 𝑋)) = (𝑁 · ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑋))) |
14 | 4 | pwsmnd 17546 | . . . . 5 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → 𝑌 ∈ Mnd) |
15 | 14 | adantr 472 | . . . 4 ⊢ (((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) ∧ (𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼)) → 𝑌 ∈ Mnd) |
16 | 5, 10 | mulgnn0cl 17779 | . . . 4 ⊢ ((𝑌 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (𝑁 ∙ 𝑋) ∈ 𝐵) |
17 | 15, 8, 9, 16 | syl3anc 1477 | . . 3 ⊢ (((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) ∧ (𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼)) → (𝑁 ∙ 𝑋) ∈ 𝐵) |
18 | fveq1 6352 | . . . 4 ⊢ (𝑥 = (𝑁 ∙ 𝑋) → (𝑥‘𝐴) = ((𝑁 ∙ 𝑋)‘𝐴)) | |
19 | eqid 2760 | . . . 4 ⊢ (𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴)) = (𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴)) | |
20 | fvex 6363 | . . . 4 ⊢ ((𝑁 ∙ 𝑋)‘𝐴) ∈ V | |
21 | 18, 19, 20 | fvmpt 6445 | . . 3 ⊢ ((𝑁 ∙ 𝑋) ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘(𝑁 ∙ 𝑋)) = ((𝑁 ∙ 𝑋)‘𝐴)) |
22 | 17, 21 | syl 17 | . 2 ⊢ (((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) ∧ (𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼)) → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘(𝑁 ∙ 𝑋)) = ((𝑁 ∙ 𝑋)‘𝐴)) |
23 | fveq1 6352 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥‘𝐴) = (𝑋‘𝐴)) | |
24 | fvex 6363 | . . . . 5 ⊢ (𝑋‘𝐴) ∈ V | |
25 | 23, 19, 24 | fvmpt 6445 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑋) = (𝑋‘𝐴)) |
26 | 9, 25 | syl 17 | . . 3 ⊢ (((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) ∧ (𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼)) → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑋) = (𝑋‘𝐴)) |
27 | 26 | oveq2d 6830 | . 2 ⊢ (((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) ∧ (𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼)) → (𝑁 · ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑋)) = (𝑁 · (𝑋‘𝐴))) |
28 | 13, 22, 27 | 3eqtr3d 2802 | 1 ⊢ (((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) ∧ (𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼)) → ((𝑁 ∙ 𝑋)‘𝐴) = (𝑁 · (𝑋‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ↦ cmpt 4881 ‘cfv 6049 (class class class)co 6814 ℕ0cn0 11504 Basecbs 16079 ↑s cpws 16329 Mndcmnd 17515 MndHom cmhm 17554 .gcmg 17761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-inf2 8713 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-oadd 7734 df-er 7913 df-map 8027 df-ixp 8077 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-sup 8515 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-2 11291 df-3 11292 df-4 11293 df-5 11294 df-6 11295 df-7 11296 df-8 11297 df-9 11298 df-n0 11505 df-z 11590 df-dec 11706 df-uz 11900 df-fz 12540 df-seq 13016 df-struct 16081 df-ndx 16082 df-slot 16083 df-base 16085 df-plusg 16176 df-mulr 16177 df-sca 16179 df-vsca 16180 df-ip 16181 df-tset 16182 df-ple 16183 df-ds 16186 df-hom 16188 df-cco 16189 df-0g 16324 df-prds 16330 df-pws 16332 df-mgm 17463 df-sgrp 17505 df-mnd 17516 df-mhm 17556 df-mulg 17762 |
This theorem is referenced by: evl1expd 19931 |
Copyright terms: Public domain | W3C validator |