MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwssplit1 Structured version   Visualization version   GIF version

Theorem pwssplit1 19762
Description: Splitting for structure powers, part 1: restriction is an onto function. The only actual monoid law we need here is that the base set is nonempty. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypotheses
Ref Expression
pwssplit1.y 𝑌 = (𝑊s 𝑈)
pwssplit1.z 𝑍 = (𝑊s 𝑉)
pwssplit1.b 𝐵 = (Base‘𝑌)
pwssplit1.c 𝐶 = (Base‘𝑍)
pwssplit1.f 𝐹 = (𝑥𝐵 ↦ (𝑥𝑉))
Assertion
Ref Expression
pwssplit1 ((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) → 𝐹:𝐵onto𝐶)
Distinct variable groups:   𝑥,𝑌   𝑥,𝑊   𝑥,𝑈   𝑥,𝑍   𝑥,𝑉   𝑥,𝐵   𝑥,𝐶   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem pwssplit1
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwssplit1.y . . 3 𝑌 = (𝑊s 𝑈)
2 pwssplit1.z . . 3 𝑍 = (𝑊s 𝑉)
3 pwssplit1.b . . 3 𝐵 = (Base‘𝑌)
4 pwssplit1.c . . 3 𝐶 = (Base‘𝑍)
5 pwssplit1.f . . 3 𝐹 = (𝑥𝐵 ↦ (𝑥𝑉))
61, 2, 3, 4, 5pwssplit0 19761 . 2 ((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) → 𝐹:𝐵𝐶)
7 simp1 1128 . . . . . . . . 9 ((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) → 𝑊 ∈ Mnd)
8 simp2 1129 . . . . . . . . . 10 ((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) → 𝑈𝑋)
9 simp3 1130 . . . . . . . . . 10 ((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) → 𝑉𝑈)
108, 9ssexd 5220 . . . . . . . . 9 ((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) → 𝑉 ∈ V)
11 eqid 2821 . . . . . . . . . 10 (Base‘𝑊) = (Base‘𝑊)
122, 11, 4pwselbasb 16751 . . . . . . . . 9 ((𝑊 ∈ Mnd ∧ 𝑉 ∈ V) → (𝑎𝐶𝑎:𝑉⟶(Base‘𝑊)))
137, 10, 12syl2anc 584 . . . . . . . 8 ((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) → (𝑎𝐶𝑎:𝑉⟶(Base‘𝑊)))
1413biimpa 477 . . . . . . 7 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → 𝑎:𝑉⟶(Base‘𝑊))
15 fvex 6677 . . . . . . . . . 10 (0g𝑊) ∈ V
1615fconst 6559 . . . . . . . . 9 ((𝑈𝑉) × {(0g𝑊)}):(𝑈𝑉)⟶{(0g𝑊)}
1716a1i 11 . . . . . . . 8 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → ((𝑈𝑉) × {(0g𝑊)}):(𝑈𝑉)⟶{(0g𝑊)})
18 simpl1 1183 . . . . . . . . . 10 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → 𝑊 ∈ Mnd)
19 eqid 2821 . . . . . . . . . . 11 (0g𝑊) = (0g𝑊)
2011, 19mndidcl 17916 . . . . . . . . . 10 (𝑊 ∈ Mnd → (0g𝑊) ∈ (Base‘𝑊))
2118, 20syl 17 . . . . . . . . 9 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (0g𝑊) ∈ (Base‘𝑊))
2221snssd 4736 . . . . . . . 8 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → {(0g𝑊)} ⊆ (Base‘𝑊))
2317, 22fssd 6522 . . . . . . 7 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → ((𝑈𝑉) × {(0g𝑊)}):(𝑈𝑉)⟶(Base‘𝑊))
24 disjdif 4419 . . . . . . . 8 (𝑉 ∩ (𝑈𝑉)) = ∅
2524a1i 11 . . . . . . 7 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (𝑉 ∩ (𝑈𝑉)) = ∅)
26 fun 6534 . . . . . . 7 (((𝑎:𝑉⟶(Base‘𝑊) ∧ ((𝑈𝑉) × {(0g𝑊)}):(𝑈𝑉)⟶(Base‘𝑊)) ∧ (𝑉 ∩ (𝑈𝑉)) = ∅) → (𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})):(𝑉 ∪ (𝑈𝑉))⟶((Base‘𝑊) ∪ (Base‘𝑊)))
2714, 23, 25, 26syl21anc 833 . . . . . 6 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})):(𝑉 ∪ (𝑈𝑉))⟶((Base‘𝑊) ∪ (Base‘𝑊)))
28 simpl3 1185 . . . . . . . 8 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → 𝑉𝑈)
29 undif 4428 . . . . . . . 8 (𝑉𝑈 ↔ (𝑉 ∪ (𝑈𝑉)) = 𝑈)
3028, 29sylib 219 . . . . . . 7 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (𝑉 ∪ (𝑈𝑉)) = 𝑈)
31 unidm 4127 . . . . . . . 8 ((Base‘𝑊) ∪ (Base‘𝑊)) = (Base‘𝑊)
3231a1i 11 . . . . . . 7 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → ((Base‘𝑊) ∪ (Base‘𝑊)) = (Base‘𝑊))
3330, 32feq23d 6503 . . . . . 6 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → ((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})):(𝑉 ∪ (𝑈𝑉))⟶((Base‘𝑊) ∪ (Base‘𝑊)) ↔ (𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})):𝑈⟶(Base‘𝑊)))
3427, 33mpbid 233 . . . . 5 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})):𝑈⟶(Base‘𝑊))
35 simpl2 1184 . . . . . 6 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → 𝑈𝑋)
361, 11, 3pwselbasb 16751 . . . . . 6 ((𝑊 ∈ Mnd ∧ 𝑈𝑋) → ((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ∈ 𝐵 ↔ (𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})):𝑈⟶(Base‘𝑊)))
3718, 35, 36syl2anc 584 . . . . 5 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → ((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ∈ 𝐵 ↔ (𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})):𝑈⟶(Base‘𝑊)))
3834, 37mpbird 258 . . . 4 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ∈ 𝐵)
395fvtresfn 6764 . . . . . 6 ((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ∈ 𝐵 → (𝐹‘(𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)}))) = ((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ↾ 𝑉))
4038, 39syl 17 . . . . 5 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (𝐹‘(𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)}))) = ((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ↾ 𝑉))
41 resundir 5862 . . . . . . 7 ((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ↾ 𝑉) = ((𝑎𝑉) ∪ (((𝑈𝑉) × {(0g𝑊)}) ↾ 𝑉))
42 ffn 6508 . . . . . . . . 9 (𝑎:𝑉⟶(Base‘𝑊) → 𝑎 Fn 𝑉)
43 fnresdm 6460 . . . . . . . . 9 (𝑎 Fn 𝑉 → (𝑎𝑉) = 𝑎)
4414, 42, 433syl 18 . . . . . . . 8 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (𝑎𝑉) = 𝑎)
45 incom 4177 . . . . . . . . . 10 ((𝑈𝑉) ∩ 𝑉) = (𝑉 ∩ (𝑈𝑉))
4645, 24eqtri 2844 . . . . . . . . 9 ((𝑈𝑉) ∩ 𝑉) = ∅
47 fnconstg 6561 . . . . . . . . . . 11 ((0g𝑊) ∈ V → ((𝑈𝑉) × {(0g𝑊)}) Fn (𝑈𝑉))
4815, 47ax-mp 5 . . . . . . . . . 10 ((𝑈𝑉) × {(0g𝑊)}) Fn (𝑈𝑉)
49 fnresdisj 6461 . . . . . . . . . 10 (((𝑈𝑉) × {(0g𝑊)}) Fn (𝑈𝑉) → (((𝑈𝑉) ∩ 𝑉) = ∅ ↔ (((𝑈𝑉) × {(0g𝑊)}) ↾ 𝑉) = ∅))
5048, 49mp1i 13 . . . . . . . . 9 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (((𝑈𝑉) ∩ 𝑉) = ∅ ↔ (((𝑈𝑉) × {(0g𝑊)}) ↾ 𝑉) = ∅))
5146, 50mpbii 234 . . . . . . . 8 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (((𝑈𝑉) × {(0g𝑊)}) ↾ 𝑉) = ∅)
5244, 51uneq12d 4139 . . . . . . 7 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → ((𝑎𝑉) ∪ (((𝑈𝑉) × {(0g𝑊)}) ↾ 𝑉)) = (𝑎 ∪ ∅))
5341, 52syl5eq 2868 . . . . . 6 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → ((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ↾ 𝑉) = (𝑎 ∪ ∅))
54 un0 4343 . . . . . 6 (𝑎 ∪ ∅) = 𝑎
5553, 54syl6eq 2872 . . . . 5 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → ((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ↾ 𝑉) = 𝑎)
5640, 55eqtr2d 2857 . . . 4 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → 𝑎 = (𝐹‘(𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)}))))
57 fveq2 6664 . . . . 5 (𝑏 = (𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) → (𝐹𝑏) = (𝐹‘(𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)}))))
5857rspceeqv 3637 . . . 4 (((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ∈ 𝐵𝑎 = (𝐹‘(𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})))) → ∃𝑏𝐵 𝑎 = (𝐹𝑏))
5938, 56, 58syl2anc 584 . . 3 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → ∃𝑏𝐵 𝑎 = (𝐹𝑏))
6059ralrimiva 3182 . 2 ((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) → ∀𝑎𝐶𝑏𝐵 𝑎 = (𝐹𝑏))
61 dffo3 6861 . 2 (𝐹:𝐵onto𝐶 ↔ (𝐹:𝐵𝐶 ∧ ∀𝑎𝐶𝑏𝐵 𝑎 = (𝐹𝑏)))
626, 60, 61sylanbrc 583 1 ((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) → 𝐹:𝐵onto𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wral 3138  wrex 3139  Vcvv 3495  cdif 3932  cun 3933  cin 3934  wss 3935  c0 4290  {csn 4559  cmpt 5138   × cxp 5547  cres 5551   Fn wfn 6344  wf 6345  ontowfo 6347  cfv 6349  (class class class)co 7145  Basecbs 16473  0gc0g 16703  s cpws 16710  Mndcmnd 17901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4833  df-int 4870  df-iun 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-oadd 8097  df-er 8279  df-map 8398  df-ixp 8451  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-sup 8895  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-2 11689  df-3 11690  df-4 11691  df-5 11692  df-6 11693  df-7 11694  df-8 11695  df-9 11696  df-n0 11887  df-z 11971  df-dec 12088  df-uz 12233  df-fz 12883  df-struct 16475  df-ndx 16476  df-slot 16477  df-base 16479  df-plusg 16568  df-mulr 16569  df-sca 16571  df-vsca 16572  df-ip 16573  df-tset 16574  df-ple 16575  df-ds 16577  df-hom 16579  df-cco 16580  df-0g 16705  df-prds 16711  df-pws 16713  df-mgm 17842  df-sgrp 17891  df-mnd 17902
This theorem is referenced by:  pwslnmlem2  39573
  Copyright terms: Public domain W3C validator