Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwssplit4 Structured version   Visualization version   GIF version

Theorem pwssplit4 39569
Description: Splitting for structure powers 4: maps isomorphically onto the other half. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Hypotheses
Ref Expression
pwssplit4.e 𝐸 = (𝑅s (𝐴𝐵))
pwssplit4.g 𝐺 = (Base‘𝐸)
pwssplit4.z 0 = (0g𝑅)
pwssplit4.k 𝐾 = {𝑦𝐺 ∣ (𝑦𝐴) = (𝐴 × { 0 })}
pwssplit4.f 𝐹 = (𝑥𝐾 ↦ (𝑥𝐵))
pwssplit4.c 𝐶 = (𝑅s 𝐴)
pwssplit4.d 𝐷 = (𝑅s 𝐵)
pwssplit4.l 𝐿 = (𝐸s 𝐾)
Assertion
Ref Expression
pwssplit4 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → 𝐹 ∈ (𝐿 LMIso 𝐷))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐸,𝑦   𝑥,𝐺,𝑦   𝑥,𝐾   𝑥,𝐿   𝑥,𝑅,𝑦   𝑥,𝑉,𝑦   𝑥, 0 ,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐾(𝑦)   𝐿(𝑦)

Proof of Theorem pwssplit4
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 pwssplit4.f . . . 4 𝐹 = (𝑥𝐾 ↦ (𝑥𝐵))
2 pwssplit4.k . . . . . 6 𝐾 = {𝑦𝐺 ∣ (𝑦𝐴) = (𝐴 × { 0 })}
3 ssrab2 4055 . . . . . 6 {𝑦𝐺 ∣ (𝑦𝐴) = (𝐴 × { 0 })} ⊆ 𝐺
42, 3eqsstri 4000 . . . . 5 𝐾𝐺
5 resmpt 5899 . . . . 5 (𝐾𝐺 → ((𝑥𝐺 ↦ (𝑥𝐵)) ↾ 𝐾) = (𝑥𝐾 ↦ (𝑥𝐵)))
64, 5ax-mp 5 . . . 4 ((𝑥𝐺 ↦ (𝑥𝐵)) ↾ 𝐾) = (𝑥𝐾 ↦ (𝑥𝐵))
71, 6eqtr4i 2847 . . 3 𝐹 = ((𝑥𝐺 ↦ (𝑥𝐵)) ↾ 𝐾)
8 ssun2 4148 . . . . . 6 𝐵 ⊆ (𝐴𝐵)
98a1i 11 . . . . 5 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → 𝐵 ⊆ (𝐴𝐵))
10 pwssplit4.e . . . . . 6 𝐸 = (𝑅s (𝐴𝐵))
11 pwssplit4.d . . . . . 6 𝐷 = (𝑅s 𝐵)
12 pwssplit4.g . . . . . 6 𝐺 = (Base‘𝐸)
13 eqid 2821 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
14 eqid 2821 . . . . . 6 (𝑥𝐺 ↦ (𝑥𝐵)) = (𝑥𝐺 ↦ (𝑥𝐵))
1510, 11, 12, 13, 14pwssplit3 19764 . . . . 5 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉𝐵 ⊆ (𝐴𝐵)) → (𝑥𝐺 ↦ (𝑥𝐵)) ∈ (𝐸 LMHom 𝐷))
169, 15syld3an3 1401 . . . 4 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → (𝑥𝐺 ↦ (𝑥𝐵)) ∈ (𝐸 LMHom 𝐷))
17 simp1 1128 . . . . . . . . . 10 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → 𝑅 ∈ LMod)
18 lmodgrp 19572 . . . . . . . . . 10 (𝑅 ∈ LMod → 𝑅 ∈ Grp)
19 grpmnd 18050 . . . . . . . . . 10 (𝑅 ∈ Grp → 𝑅 ∈ Mnd)
2017, 18, 193syl 18 . . . . . . . . 9 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → 𝑅 ∈ Mnd)
21 ssun1 4147 . . . . . . . . . . 11 𝐴 ⊆ (𝐴𝐵)
22 ssexg 5219 . . . . . . . . . . 11 ((𝐴 ⊆ (𝐴𝐵) ∧ (𝐴𝐵) ∈ 𝑉) → 𝐴 ∈ V)
2321, 22mpan 686 . . . . . . . . . 10 ((𝐴𝐵) ∈ 𝑉𝐴 ∈ V)
24233ad2ant2 1126 . . . . . . . . 9 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → 𝐴 ∈ V)
25 pwssplit4.c . . . . . . . . . 10 𝐶 = (𝑅s 𝐴)
26 pwssplit4.z . . . . . . . . . 10 0 = (0g𝑅)
2725, 26pws0g 17937 . . . . . . . . 9 ((𝑅 ∈ Mnd ∧ 𝐴 ∈ V) → (𝐴 × { 0 }) = (0g𝐶))
2820, 24, 27syl2anc 584 . . . . . . . 8 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → (𝐴 × { 0 }) = (0g𝐶))
2928eqeq2d 2832 . . . . . . 7 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → ((𝑦𝐴) = (𝐴 × { 0 }) ↔ (𝑦𝐴) = (0g𝐶)))
3029rabbidv 3481 . . . . . 6 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → {𝑦𝐺 ∣ (𝑦𝐴) = (𝐴 × { 0 })} = {𝑦𝐺 ∣ (𝑦𝐴) = (0g𝐶)})
312, 30syl5eq 2868 . . . . 5 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → 𝐾 = {𝑦𝐺 ∣ (𝑦𝐴) = (0g𝐶)})
3221a1i 11 . . . . . . 7 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → 𝐴 ⊆ (𝐴𝐵))
33 eqid 2821 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
34 eqid 2821 . . . . . . . 8 (𝑦𝐺 ↦ (𝑦𝐴)) = (𝑦𝐺 ↦ (𝑦𝐴))
3510, 25, 12, 33, 34pwssplit3 19764 . . . . . . 7 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉𝐴 ⊆ (𝐴𝐵)) → (𝑦𝐺 ↦ (𝑦𝐴)) ∈ (𝐸 LMHom 𝐶))
3632, 35syld3an3 1401 . . . . . 6 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → (𝑦𝐺 ↦ (𝑦𝐴)) ∈ (𝐸 LMHom 𝐶))
37 fvex 6677 . . . . . . . . 9 (0g𝐶) ∈ V
3834mptiniseg 6087 . . . . . . . . 9 ((0g𝐶) ∈ V → ((𝑦𝐺 ↦ (𝑦𝐴)) “ {(0g𝐶)}) = {𝑦𝐺 ∣ (𝑦𝐴) = (0g𝐶)})
3937, 38ax-mp 5 . . . . . . . 8 ((𝑦𝐺 ↦ (𝑦𝐴)) “ {(0g𝐶)}) = {𝑦𝐺 ∣ (𝑦𝐴) = (0g𝐶)}
4039eqcomi 2830 . . . . . . 7 {𝑦𝐺 ∣ (𝑦𝐴) = (0g𝐶)} = ((𝑦𝐺 ↦ (𝑦𝐴)) “ {(0g𝐶)})
41 eqid 2821 . . . . . . 7 (0g𝐶) = (0g𝐶)
42 eqid 2821 . . . . . . 7 (LSubSp‘𝐸) = (LSubSp‘𝐸)
4340, 41, 42lmhmkerlss 19754 . . . . . 6 ((𝑦𝐺 ↦ (𝑦𝐴)) ∈ (𝐸 LMHom 𝐶) → {𝑦𝐺 ∣ (𝑦𝐴) = (0g𝐶)} ∈ (LSubSp‘𝐸))
4436, 43syl 17 . . . . 5 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → {𝑦𝐺 ∣ (𝑦𝐴) = (0g𝐶)} ∈ (LSubSp‘𝐸))
4531, 44eqeltrd 2913 . . . 4 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → 𝐾 ∈ (LSubSp‘𝐸))
46 pwssplit4.l . . . . 5 𝐿 = (𝐸s 𝐾)
4742, 46reslmhm 19755 . . . 4 (((𝑥𝐺 ↦ (𝑥𝐵)) ∈ (𝐸 LMHom 𝐷) ∧ 𝐾 ∈ (LSubSp‘𝐸)) → ((𝑥𝐺 ↦ (𝑥𝐵)) ↾ 𝐾) ∈ (𝐿 LMHom 𝐷))
4816, 45, 47syl2anc 584 . . 3 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → ((𝑥𝐺 ↦ (𝑥𝐵)) ↾ 𝐾) ∈ (𝐿 LMHom 𝐷))
497, 48eqeltrid 2917 . 2 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → 𝐹 ∈ (𝐿 LMHom 𝐷))
501fvtresfn 6764 . . . . . . 7 (𝑎𝐾 → (𝐹𝑎) = (𝑎𝐵))
51 ssexg 5219 . . . . . . . . . . 11 ((𝐵 ⊆ (𝐴𝐵) ∧ (𝐴𝐵) ∈ 𝑉) → 𝐵 ∈ V)
528, 51mpan 686 . . . . . . . . . 10 ((𝐴𝐵) ∈ 𝑉𝐵 ∈ V)
53523ad2ant2 1126 . . . . . . . . 9 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → 𝐵 ∈ V)
5411, 26pws0g 17937 . . . . . . . . 9 ((𝑅 ∈ Mnd ∧ 𝐵 ∈ V) → (𝐵 × { 0 }) = (0g𝐷))
5520, 53, 54syl2anc 584 . . . . . . . 8 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → (𝐵 × { 0 }) = (0g𝐷))
5655eqcomd 2827 . . . . . . 7 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → (0g𝐷) = (𝐵 × { 0 }))
5750, 56eqeqan12rd 2840 . . . . . 6 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎𝐾) → ((𝐹𝑎) = (0g𝐷) ↔ (𝑎𝐵) = (𝐵 × { 0 })))
58 reseq1 5841 . . . . . . . . . 10 (𝑦 = 𝑎 → (𝑦𝐴) = (𝑎𝐴))
5958eqeq1d 2823 . . . . . . . . 9 (𝑦 = 𝑎 → ((𝑦𝐴) = (𝐴 × { 0 }) ↔ (𝑎𝐴) = (𝐴 × { 0 })))
6059, 2elrab2 3682 . . . . . . . 8 (𝑎𝐾 ↔ (𝑎𝐺 ∧ (𝑎𝐴) = (𝐴 × { 0 })))
61 uneq12 4133 . . . . . . . . . . . . 13 (((𝑎𝐴) = (𝐴 × { 0 }) ∧ (𝑎𝐵) = (𝐵 × { 0 })) → ((𝑎𝐴) ∪ (𝑎𝐵)) = ((𝐴 × { 0 }) ∪ (𝐵 × { 0 })))
62 resundi 5861 . . . . . . . . . . . . 13 (𝑎 ↾ (𝐴𝐵)) = ((𝑎𝐴) ∪ (𝑎𝐵))
63 xpundir 5615 . . . . . . . . . . . . 13 ((𝐴𝐵) × { 0 }) = ((𝐴 × { 0 }) ∪ (𝐵 × { 0 }))
6461, 62, 633eqtr4g 2881 . . . . . . . . . . . 12 (((𝑎𝐴) = (𝐴 × { 0 }) ∧ (𝑎𝐵) = (𝐵 × { 0 })) → (𝑎 ↾ (𝐴𝐵)) = ((𝐴𝐵) × { 0 }))
6564adantll 710 . . . . . . . . . . 11 (((𝑎𝐺 ∧ (𝑎𝐴) = (𝐴 × { 0 })) ∧ (𝑎𝐵) = (𝐵 × { 0 })) → (𝑎 ↾ (𝐴𝐵)) = ((𝐴𝐵) × { 0 }))
6665adantl 482 . . . . . . . . . 10 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ ((𝑎𝐺 ∧ (𝑎𝐴) = (𝐴 × { 0 })) ∧ (𝑎𝐵) = (𝐵 × { 0 }))) → (𝑎 ↾ (𝐴𝐵)) = ((𝐴𝐵) × { 0 }))
67 eqid 2821 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
68 simpl1 1183 . . . . . . . . . . . 12 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ ((𝑎𝐺 ∧ (𝑎𝐴) = (𝐴 × { 0 })) ∧ (𝑎𝐵) = (𝐵 × { 0 }))) → 𝑅 ∈ LMod)
69 simp2 1129 . . . . . . . . . . . . 13 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ∈ 𝑉)
7069adantr 481 . . . . . . . . . . . 12 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ ((𝑎𝐺 ∧ (𝑎𝐴) = (𝐴 × { 0 })) ∧ (𝑎𝐵) = (𝐵 × { 0 }))) → (𝐴𝐵) ∈ 𝑉)
71 simprll 775 . . . . . . . . . . . 12 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ ((𝑎𝐺 ∧ (𝑎𝐴) = (𝐴 × { 0 })) ∧ (𝑎𝐵) = (𝐵 × { 0 }))) → 𝑎𝐺)
7210, 67, 12, 68, 70, 71pwselbas 16752 . . . . . . . . . . 11 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ ((𝑎𝐺 ∧ (𝑎𝐴) = (𝐴 × { 0 })) ∧ (𝑎𝐵) = (𝐵 × { 0 }))) → 𝑎:(𝐴𝐵)⟶(Base‘𝑅))
73 ffn 6508 . . . . . . . . . . 11 (𝑎:(𝐴𝐵)⟶(Base‘𝑅) → 𝑎 Fn (𝐴𝐵))
74 fnresdm 6460 . . . . . . . . . . 11 (𝑎 Fn (𝐴𝐵) → (𝑎 ↾ (𝐴𝐵)) = 𝑎)
7572, 73, 743syl 18 . . . . . . . . . 10 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ ((𝑎𝐺 ∧ (𝑎𝐴) = (𝐴 × { 0 })) ∧ (𝑎𝐵) = (𝐵 × { 0 }))) → (𝑎 ↾ (𝐴𝐵)) = 𝑎)
7610, 26pws0g 17937 . . . . . . . . . . . . 13 ((𝑅 ∈ Mnd ∧ (𝐴𝐵) ∈ 𝑉) → ((𝐴𝐵) × { 0 }) = (0g𝐸))
7720, 69, 76syl2anc 584 . . . . . . . . . . . 12 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → ((𝐴𝐵) × { 0 }) = (0g𝐸))
7810pwslmod 19673 . . . . . . . . . . . . . . 15 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉) → 𝐸 ∈ LMod)
79783adant3 1124 . . . . . . . . . . . . . 14 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → 𝐸 ∈ LMod)
8042lsssubg 19660 . . . . . . . . . . . . . 14 ((𝐸 ∈ LMod ∧ 𝐾 ∈ (LSubSp‘𝐸)) → 𝐾 ∈ (SubGrp‘𝐸))
8179, 45, 80syl2anc 584 . . . . . . . . . . . . 13 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → 𝐾 ∈ (SubGrp‘𝐸))
82 eqid 2821 . . . . . . . . . . . . . 14 (0g𝐸) = (0g𝐸)
8346, 82subg0 18225 . . . . . . . . . . . . 13 (𝐾 ∈ (SubGrp‘𝐸) → (0g𝐸) = (0g𝐿))
8481, 83syl 17 . . . . . . . . . . . 12 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → (0g𝐸) = (0g𝐿))
8577, 84eqtrd 2856 . . . . . . . . . . 11 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → ((𝐴𝐵) × { 0 }) = (0g𝐿))
8685adantr 481 . . . . . . . . . 10 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ ((𝑎𝐺 ∧ (𝑎𝐴) = (𝐴 × { 0 })) ∧ (𝑎𝐵) = (𝐵 × { 0 }))) → ((𝐴𝐵) × { 0 }) = (0g𝐿))
8766, 75, 863eqtr3d 2864 . . . . . . . . 9 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ ((𝑎𝐺 ∧ (𝑎𝐴) = (𝐴 × { 0 })) ∧ (𝑎𝐵) = (𝐵 × { 0 }))) → 𝑎 = (0g𝐿))
8887exp32 421 . . . . . . . 8 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → ((𝑎𝐺 ∧ (𝑎𝐴) = (𝐴 × { 0 })) → ((𝑎𝐵) = (𝐵 × { 0 }) → 𝑎 = (0g𝐿))))
8960, 88syl5bi 243 . . . . . . 7 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → (𝑎𝐾 → ((𝑎𝐵) = (𝐵 × { 0 }) → 𝑎 = (0g𝐿))))
9089imp 407 . . . . . 6 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎𝐾) → ((𝑎𝐵) = (𝐵 × { 0 }) → 𝑎 = (0g𝐿)))
9157, 90sylbid 241 . . . . 5 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎𝐾) → ((𝐹𝑎) = (0g𝐷) → 𝑎 = (0g𝐿)))
9291ralrimiva 3182 . . . 4 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → ∀𝑎𝐾 ((𝐹𝑎) = (0g𝐷) → 𝑎 = (0g𝐿)))
93 lmghm 19734 . . . . 5 (𝐹 ∈ (𝐿 LMHom 𝐷) → 𝐹 ∈ (𝐿 GrpHom 𝐷))
9446, 12ressbas2 16545 . . . . . . 7 (𝐾𝐺𝐾 = (Base‘𝐿))
954, 94ax-mp 5 . . . . . 6 𝐾 = (Base‘𝐿)
96 eqid 2821 . . . . . 6 (0g𝐿) = (0g𝐿)
97 eqid 2821 . . . . . 6 (0g𝐷) = (0g𝐷)
9895, 13, 96, 97ghmf1 18327 . . . . 5 (𝐹 ∈ (𝐿 GrpHom 𝐷) → (𝐹:𝐾1-1→(Base‘𝐷) ↔ ∀𝑎𝐾 ((𝐹𝑎) = (0g𝐷) → 𝑎 = (0g𝐿))))
9949, 93, 983syl 18 . . . 4 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → (𝐹:𝐾1-1→(Base‘𝐷) ↔ ∀𝑎𝐾 ((𝐹𝑎) = (0g𝐷) → 𝑎 = (0g𝐿))))
10092, 99mpbird 258 . . 3 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → 𝐹:𝐾1-1→(Base‘𝐷))
101 eqid 2821 . . . . . 6 (Base‘𝐿) = (Base‘𝐿)
102101, 13lmhmf 19737 . . . . 5 (𝐹 ∈ (𝐿 LMHom 𝐷) → 𝐹:(Base‘𝐿)⟶(Base‘𝐷))
103 frn 6514 . . . . 5 (𝐹:(Base‘𝐿)⟶(Base‘𝐷) → ran 𝐹 ⊆ (Base‘𝐷))
10449, 102, 1033syl 18 . . . 4 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → ran 𝐹 ⊆ (Base‘𝐷))
105 reseq1 5841 . . . . . . 7 (𝑥 = (𝑎 ∪ (𝐴 × { 0 })) → (𝑥𝐵) = ((𝑎 ∪ (𝐴 × { 0 })) ↾ 𝐵))
10611, 67, 13pwselbasb 16751 . . . . . . . . . . . . 13 ((𝑅 ∈ LMod ∧ 𝐵 ∈ V) → (𝑎 ∈ (Base‘𝐷) ↔ 𝑎:𝐵⟶(Base‘𝑅)))
10717, 53, 106syl2anc 584 . . . . . . . . . . . 12 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → (𝑎 ∈ (Base‘𝐷) ↔ 𝑎:𝐵⟶(Base‘𝑅)))
108107biimpa 477 . . . . . . . . . . 11 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → 𝑎:𝐵⟶(Base‘𝑅))
10926fvexi 6678 . . . . . . . . . . . . . 14 0 ∈ V
110109fconst 6559 . . . . . . . . . . . . 13 (𝐴 × { 0 }):𝐴⟶{ 0 }
111110a1i 11 . . . . . . . . . . . 12 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → (𝐴 × { 0 }):𝐴⟶{ 0 })
11220adantr 481 . . . . . . . . . . . . . 14 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → 𝑅 ∈ Mnd)
11367, 26mndidcl 17916 . . . . . . . . . . . . . 14 (𝑅 ∈ Mnd → 0 ∈ (Base‘𝑅))
114112, 113syl 17 . . . . . . . . . . . . 13 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → 0 ∈ (Base‘𝑅))
115114snssd 4736 . . . . . . . . . . . 12 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → { 0 } ⊆ (Base‘𝑅))
116111, 115fssd 6522 . . . . . . . . . . 11 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → (𝐴 × { 0 }):𝐴⟶(Base‘𝑅))
117 incom 4177 . . . . . . . . . . . . 13 (𝐵𝐴) = (𝐴𝐵)
118 simp3 1130 . . . . . . . . . . . . 13 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) = ∅)
119117, 118syl5eq 2868 . . . . . . . . . . . 12 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → (𝐵𝐴) = ∅)
120119adantr 481 . . . . . . . . . . 11 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → (𝐵𝐴) = ∅)
121 fun 6534 . . . . . . . . . . 11 (((𝑎:𝐵⟶(Base‘𝑅) ∧ (𝐴 × { 0 }):𝐴⟶(Base‘𝑅)) ∧ (𝐵𝐴) = ∅) → (𝑎 ∪ (𝐴 × { 0 })):(𝐵𝐴)⟶((Base‘𝑅) ∪ (Base‘𝑅)))
122108, 116, 120, 121syl21anc 833 . . . . . . . . . 10 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → (𝑎 ∪ (𝐴 × { 0 })):(𝐵𝐴)⟶((Base‘𝑅) ∪ (Base‘𝑅)))
123 uncom 4128 . . . . . . . . . . 11 (𝐵𝐴) = (𝐴𝐵)
124 unidm 4127 . . . . . . . . . . 11 ((Base‘𝑅) ∪ (Base‘𝑅)) = (Base‘𝑅)
125123, 124feq23i 6502 . . . . . . . . . 10 ((𝑎 ∪ (𝐴 × { 0 })):(𝐵𝐴)⟶((Base‘𝑅) ∪ (Base‘𝑅)) ↔ (𝑎 ∪ (𝐴 × { 0 })):(𝐴𝐵)⟶(Base‘𝑅))
126122, 125sylib 219 . . . . . . . . 9 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → (𝑎 ∪ (𝐴 × { 0 })):(𝐴𝐵)⟶(Base‘𝑅))
12710, 67, 12pwselbasb 16751 . . . . . . . . . . 11 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉) → ((𝑎 ∪ (𝐴 × { 0 })) ∈ 𝐺 ↔ (𝑎 ∪ (𝐴 × { 0 })):(𝐴𝐵)⟶(Base‘𝑅)))
1281273adant3 1124 . . . . . . . . . 10 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → ((𝑎 ∪ (𝐴 × { 0 })) ∈ 𝐺 ↔ (𝑎 ∪ (𝐴 × { 0 })):(𝐴𝐵)⟶(Base‘𝑅)))
129128adantr 481 . . . . . . . . 9 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → ((𝑎 ∪ (𝐴 × { 0 })) ∈ 𝐺 ↔ (𝑎 ∪ (𝐴 × { 0 })):(𝐴𝐵)⟶(Base‘𝑅)))
130126, 129mpbird 258 . . . . . . . 8 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → (𝑎 ∪ (𝐴 × { 0 })) ∈ 𝐺)
131 simpl3 1185 . . . . . . . . . . . 12 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → (𝐴𝐵) = ∅)
132117, 131syl5eq 2868 . . . . . . . . . . 11 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → (𝐵𝐴) = ∅)
133 ffn 6508 . . . . . . . . . . . 12 (𝑎:𝐵⟶(Base‘𝑅) → 𝑎 Fn 𝐵)
134 fnresdisj 6461 . . . . . . . . . . . 12 (𝑎 Fn 𝐵 → ((𝐵𝐴) = ∅ ↔ (𝑎𝐴) = ∅))
135108, 133, 1343syl 18 . . . . . . . . . . 11 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → ((𝐵𝐴) = ∅ ↔ (𝑎𝐴) = ∅))
136132, 135mpbid 233 . . . . . . . . . 10 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → (𝑎𝐴) = ∅)
137 fnconstg 6561 . . . . . . . . . . . 12 ( 0 ∈ V → (𝐴 × { 0 }) Fn 𝐴)
138 fnresdm 6460 . . . . . . . . . . . 12 ((𝐴 × { 0 }) Fn 𝐴 → ((𝐴 × { 0 }) ↾ 𝐴) = (𝐴 × { 0 }))
139109, 137, 138mp2b 10 . . . . . . . . . . 11 ((𝐴 × { 0 }) ↾ 𝐴) = (𝐴 × { 0 })
140139a1i 11 . . . . . . . . . 10 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → ((𝐴 × { 0 }) ↾ 𝐴) = (𝐴 × { 0 }))
141136, 140uneq12d 4139 . . . . . . . . 9 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → ((𝑎𝐴) ∪ ((𝐴 × { 0 }) ↾ 𝐴)) = (∅ ∪ (𝐴 × { 0 })))
142 resundir 5862 . . . . . . . . 9 ((𝑎 ∪ (𝐴 × { 0 })) ↾ 𝐴) = ((𝑎𝐴) ∪ ((𝐴 × { 0 }) ↾ 𝐴))
143 uncom 4128 . . . . . . . . . 10 (∅ ∪ (𝐴 × { 0 })) = ((𝐴 × { 0 }) ∪ ∅)
144 un0 4343 . . . . . . . . . 10 ((𝐴 × { 0 }) ∪ ∅) = (𝐴 × { 0 })
145143, 144eqtr2i 2845 . . . . . . . . 9 (𝐴 × { 0 }) = (∅ ∪ (𝐴 × { 0 }))
146141, 142, 1453eqtr4g 2881 . . . . . . . 8 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → ((𝑎 ∪ (𝐴 × { 0 })) ↾ 𝐴) = (𝐴 × { 0 }))
147 reseq1 5841 . . . . . . . . . 10 (𝑦 = (𝑎 ∪ (𝐴 × { 0 })) → (𝑦𝐴) = ((𝑎 ∪ (𝐴 × { 0 })) ↾ 𝐴))
148147eqeq1d 2823 . . . . . . . . 9 (𝑦 = (𝑎 ∪ (𝐴 × { 0 })) → ((𝑦𝐴) = (𝐴 × { 0 }) ↔ ((𝑎 ∪ (𝐴 × { 0 })) ↾ 𝐴) = (𝐴 × { 0 })))
149148, 2elrab2 3682 . . . . . . . 8 ((𝑎 ∪ (𝐴 × { 0 })) ∈ 𝐾 ↔ ((𝑎 ∪ (𝐴 × { 0 })) ∈ 𝐺 ∧ ((𝑎 ∪ (𝐴 × { 0 })) ↾ 𝐴) = (𝐴 × { 0 })))
150130, 146, 149sylanbrc 583 . . . . . . 7 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → (𝑎 ∪ (𝐴 × { 0 })) ∈ 𝐾)
151 resexg 5892 . . . . . . . 8 ((𝑎 ∪ (𝐴 × { 0 })) ∈ 𝐾 → ((𝑎 ∪ (𝐴 × { 0 })) ↾ 𝐵) ∈ V)
152150, 151syl 17 . . . . . . 7 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → ((𝑎 ∪ (𝐴 × { 0 })) ↾ 𝐵) ∈ V)
1531, 105, 150, 152fvmptd3 6784 . . . . . 6 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → (𝐹‘(𝑎 ∪ (𝐴 × { 0 }))) = ((𝑎 ∪ (𝐴 × { 0 })) ↾ 𝐵))
154 resundir 5862 . . . . . . 7 ((𝑎 ∪ (𝐴 × { 0 })) ↾ 𝐵) = ((𝑎𝐵) ∪ ((𝐴 × { 0 }) ↾ 𝐵))
155 fnresdm 6460 . . . . . . . . . 10 (𝑎 Fn 𝐵 → (𝑎𝐵) = 𝑎)
156108, 133, 1553syl 18 . . . . . . . . 9 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → (𝑎𝐵) = 𝑎)
157 ffn 6508 . . . . . . . . . . . . 13 ((𝐴 × { 0 }):𝐴⟶{ 0 } → (𝐴 × { 0 }) Fn 𝐴)
158 fnresdisj 6461 . . . . . . . . . . . . 13 ((𝐴 × { 0 }) Fn 𝐴 → ((𝐴𝐵) = ∅ ↔ ((𝐴 × { 0 }) ↾ 𝐵) = ∅))
159110, 157, 158mp2b 10 . . . . . . . . . . . 12 ((𝐴𝐵) = ∅ ↔ ((𝐴 × { 0 }) ↾ 𝐵) = ∅)
160159biimpi 217 . . . . . . . . . . 11 ((𝐴𝐵) = ∅ → ((𝐴 × { 0 }) ↾ 𝐵) = ∅)
1611603ad2ant3 1127 . . . . . . . . . 10 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → ((𝐴 × { 0 }) ↾ 𝐵) = ∅)
162161adantr 481 . . . . . . . . 9 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → ((𝐴 × { 0 }) ↾ 𝐵) = ∅)
163156, 162uneq12d 4139 . . . . . . . 8 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → ((𝑎𝐵) ∪ ((𝐴 × { 0 }) ↾ 𝐵)) = (𝑎 ∪ ∅))
164 un0 4343 . . . . . . . 8 (𝑎 ∪ ∅) = 𝑎
165163, 164syl6eq 2872 . . . . . . 7 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → ((𝑎𝐵) ∪ ((𝐴 × { 0 }) ↾ 𝐵)) = 𝑎)
166154, 165syl5eq 2868 . . . . . 6 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → ((𝑎 ∪ (𝐴 × { 0 })) ↾ 𝐵) = 𝑎)
167153, 166eqtrd 2856 . . . . 5 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → (𝐹‘(𝑎 ∪ (𝐴 × { 0 }))) = 𝑎)
16895, 13lmhmf 19737 . . . . . . . 8 (𝐹 ∈ (𝐿 LMHom 𝐷) → 𝐹:𝐾⟶(Base‘𝐷))
169 ffn 6508 . . . . . . . 8 (𝐹:𝐾⟶(Base‘𝐷) → 𝐹 Fn 𝐾)
17049, 168, 1693syl 18 . . . . . . 7 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → 𝐹 Fn 𝐾)
171170adantr 481 . . . . . 6 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → 𝐹 Fn 𝐾)
172 fnfvelrn 6841 . . . . . 6 ((𝐹 Fn 𝐾 ∧ (𝑎 ∪ (𝐴 × { 0 })) ∈ 𝐾) → (𝐹‘(𝑎 ∪ (𝐴 × { 0 }))) ∈ ran 𝐹)
173171, 150, 172syl2anc 584 . . . . 5 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → (𝐹‘(𝑎 ∪ (𝐴 × { 0 }))) ∈ ran 𝐹)
174167, 173eqeltrrd 2914 . . . 4 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → 𝑎 ∈ ran 𝐹)
175104, 174eqelssd 3987 . . 3 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → ran 𝐹 = (Base‘𝐷))
176 dff1o5 6618 . . 3 (𝐹:𝐾1-1-onto→(Base‘𝐷) ↔ (𝐹:𝐾1-1→(Base‘𝐷) ∧ ran 𝐹 = (Base‘𝐷)))
177100, 175, 176sylanbrc 583 . 2 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → 𝐹:𝐾1-1-onto→(Base‘𝐷))
17895, 13islmim 19765 . 2 (𝐹 ∈ (𝐿 LMIso 𝐷) ↔ (𝐹 ∈ (𝐿 LMHom 𝐷) ∧ 𝐹:𝐾1-1-onto→(Base‘𝐷)))
17949, 177, 178sylanbrc 583 1 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → 𝐹 ∈ (𝐿 LMIso 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wral 3138  {crab 3142  Vcvv 3495  cun 3933  cin 3934  wss 3935  c0 4290  {csn 4559  cmpt 5138   × cxp 5547  ccnv 5548  ran crn 5550  cres 5551  cima 5552   Fn wfn 6344  wf 6345  1-1wf1 6346  1-1-ontowf1o 6348  cfv 6349  (class class class)co 7145  Basecbs 16473  s cress 16474  0gc0g 16703  s cpws 16710  Mndcmnd 17901  Grpcgrp 18043  SubGrpcsubg 18213   GrpHom cghm 18295  LModclmod 19565  LSubSpclss 19634   LMHom clmhm 19722   LMIso clmim 19723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4833  df-int 4870  df-iun 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-oadd 8097  df-er 8279  df-map 8398  df-ixp 8451  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-sup 8895  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-2 11689  df-3 11690  df-4 11691  df-5 11692  df-6 11693  df-7 11694  df-8 11695  df-9 11696  df-n0 11887  df-z 11971  df-dec 12088  df-uz 12233  df-fz 12883  df-struct 16475  df-ndx 16476  df-slot 16477  df-base 16479  df-sets 16480  df-ress 16481  df-plusg 16568  df-mulr 16569  df-sca 16571  df-vsca 16572  df-ip 16573  df-tset 16574  df-ple 16575  df-ds 16577  df-hom 16579  df-cco 16580  df-0g 16705  df-prds 16711  df-pws 16713  df-mgm 17842  df-sgrp 17891  df-mnd 17902  df-grp 18046  df-minusg 18047  df-sbg 18048  df-subg 18216  df-ghm 18296  df-mgp 19171  df-ur 19183  df-ring 19230  df-lmod 19567  df-lss 19635  df-lmhm 19725  df-lmim 19726
This theorem is referenced by:  pwslnmlem2  39573
  Copyright terms: Public domain W3C validator