MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsvscafval Structured version   Visualization version   GIF version

Theorem pwsvscafval 16075
Description: Scalar multiplication in a structure power is pointwise. (Contributed by Mario Carneiro, 11-Jan-2015.)
Hypotheses
Ref Expression
pwsvscaval.y 𝑌 = (𝑅s 𝐼)
pwsvscaval.b 𝐵 = (Base‘𝑌)
pwsvscaval.s · = ( ·𝑠𝑅)
pwsvscaval.t = ( ·𝑠𝑌)
pwsvscaval.f 𝐹 = (Scalar‘𝑅)
pwsvscaval.k 𝐾 = (Base‘𝐹)
pwsvscaval.r (𝜑𝑅𝑉)
pwsvscaval.i (𝜑𝐼𝑊)
pwsvscaval.a (𝜑𝐴𝐾)
pwsvscaval.x (𝜑𝑋𝐵)
Assertion
Ref Expression
pwsvscafval (𝜑 → (𝐴 𝑋) = ((𝐼 × {𝐴}) ∘𝑓 · 𝑋))

Proof of Theorem pwsvscafval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pwsvscaval.t . . . 4 = ( ·𝑠𝑌)
2 pwsvscaval.r . . . . . 6 (𝜑𝑅𝑉)
3 pwsvscaval.i . . . . . 6 (𝜑𝐼𝑊)
4 pwsvscaval.y . . . . . . 7 𝑌 = (𝑅s 𝐼)
5 pwsvscaval.f . . . . . . 7 𝐹 = (Scalar‘𝑅)
64, 5pwsval 16067 . . . . . 6 ((𝑅𝑉𝐼𝑊) → 𝑌 = (𝐹Xs(𝐼 × {𝑅})))
72, 3, 6syl2anc 692 . . . . 5 (𝜑𝑌 = (𝐹Xs(𝐼 × {𝑅})))
87fveq2d 6152 . . . 4 (𝜑 → ( ·𝑠𝑌) = ( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅}))))
91, 8syl5eq 2667 . . 3 (𝜑 = ( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅}))))
109oveqd 6621 . 2 (𝜑 → (𝐴 𝑋) = (𝐴( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅})))𝑋))
11 eqid 2621 . . 3 (𝐹Xs(𝐼 × {𝑅})) = (𝐹Xs(𝐼 × {𝑅}))
12 eqid 2621 . . 3 (Base‘(𝐹Xs(𝐼 × {𝑅}))) = (Base‘(𝐹Xs(𝐼 × {𝑅})))
13 eqid 2621 . . 3 ( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅}))) = ( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅})))
14 pwsvscaval.k . . 3 𝐾 = (Base‘𝐹)
15 fvex 6158 . . . . 5 (Scalar‘𝑅) ∈ V
165, 15eqeltri 2694 . . . 4 𝐹 ∈ V
1716a1i 11 . . 3 (𝜑𝐹 ∈ V)
18 fnconstg 6050 . . . 4 (𝑅𝑉 → (𝐼 × {𝑅}) Fn 𝐼)
192, 18syl 17 . . 3 (𝜑 → (𝐼 × {𝑅}) Fn 𝐼)
20 pwsvscaval.a . . 3 (𝜑𝐴𝐾)
21 pwsvscaval.x . . . 4 (𝜑𝑋𝐵)
22 pwsvscaval.b . . . . 5 𝐵 = (Base‘𝑌)
237fveq2d 6152 . . . . 5 (𝜑 → (Base‘𝑌) = (Base‘(𝐹Xs(𝐼 × {𝑅}))))
2422, 23syl5eq 2667 . . . 4 (𝜑𝐵 = (Base‘(𝐹Xs(𝐼 × {𝑅}))))
2521, 24eleqtrd 2700 . . 3 (𝜑𝑋 ∈ (Base‘(𝐹Xs(𝐼 × {𝑅}))))
2611, 12, 13, 14, 17, 3, 19, 20, 25prdsvscaval 16060 . 2 (𝜑 → (𝐴( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅})))𝑋) = (𝑥𝐼 ↦ (𝐴( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥))(𝑋𝑥))))
27 fvconst2g 6421 . . . . . . . 8 ((𝑅𝑉𝑥𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅)
282, 27sylan 488 . . . . . . 7 ((𝜑𝑥𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅)
2928fveq2d 6152 . . . . . 6 ((𝜑𝑥𝐼) → ( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥)) = ( ·𝑠𝑅))
30 pwsvscaval.s . . . . . 6 · = ( ·𝑠𝑅)
3129, 30syl6eqr 2673 . . . . 5 ((𝜑𝑥𝐼) → ( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥)) = · )
3231oveqd 6621 . . . 4 ((𝜑𝑥𝐼) → (𝐴( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥))(𝑋𝑥)) = (𝐴 · (𝑋𝑥)))
3332mpteq2dva 4704 . . 3 (𝜑 → (𝑥𝐼 ↦ (𝐴( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥))(𝑋𝑥))) = (𝑥𝐼 ↦ (𝐴 · (𝑋𝑥))))
3420adantr 481 . . . 4 ((𝜑𝑥𝐼) → 𝐴𝐾)
35 fvex 6158 . . . . 5 (𝑋𝑥) ∈ V
3635a1i 11 . . . 4 ((𝜑𝑥𝐼) → (𝑋𝑥) ∈ V)
37 fconstmpt 5123 . . . . 5 (𝐼 × {𝐴}) = (𝑥𝐼𝐴)
3837a1i 11 . . . 4 (𝜑 → (𝐼 × {𝐴}) = (𝑥𝐼𝐴))
39 eqid 2621 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
404, 39, 22, 2, 3, 21pwselbas 16070 . . . . 5 (𝜑𝑋:𝐼⟶(Base‘𝑅))
4140feqmptd 6206 . . . 4 (𝜑𝑋 = (𝑥𝐼 ↦ (𝑋𝑥)))
423, 34, 36, 38, 41offval2 6867 . . 3 (𝜑 → ((𝐼 × {𝐴}) ∘𝑓 · 𝑋) = (𝑥𝐼 ↦ (𝐴 · (𝑋𝑥))))
4333, 42eqtr4d 2658 . 2 (𝜑 → (𝑥𝐼 ↦ (𝐴( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥))(𝑋𝑥))) = ((𝐼 × {𝐴}) ∘𝑓 · 𝑋))
4410, 26, 433eqtrd 2659 1 (𝜑 → (𝐴 𝑋) = ((𝐼 × {𝐴}) ∘𝑓 · 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  Vcvv 3186  {csn 4148  cmpt 4673   × cxp 5072   Fn wfn 5842  cfv 5847  (class class class)co 6604  𝑓 cof 6848  Basecbs 15781  Scalarcsca 15865   ·𝑠 cvsca 15866  Xscprds 16027  s cpws 16028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-fz 12269  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-plusg 15875  df-mulr 15876  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-hom 15887  df-cco 15888  df-prds 16029  df-pws 16031
This theorem is referenced by:  pwsvscaval  16076  pwsdiaglmhm  18976  pwssplit3  18980  frlmvscafval  20028
  Copyright terms: Public domain W3C validator