MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwxpndom Structured version   Visualization version   GIF version

Theorem pwxpndom 9432
Description: The powerset of a Dedekind-infinite set does not inject into its Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
pwxpndom (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 × 𝐴))

Proof of Theorem pwxpndom
StepHypRef Expression
1 pwxpndom2 9431 . 2 (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 +𝑐 (𝐴 × 𝐴)))
2 reldom 7905 . . . . . . 7 Rel ≼
32brrelex2i 5119 . . . . . 6 (ω ≼ 𝐴𝐴 ∈ V)
4 xpexg 6913 . . . . . 6 ((𝐴 ∈ V ∧ 𝐴 ∈ V) → (𝐴 × 𝐴) ∈ V)
53, 3, 4syl2anc 692 . . . . 5 (ω ≼ 𝐴 → (𝐴 × 𝐴) ∈ V)
6 cdadom3 8954 . . . . 5 (((𝐴 × 𝐴) ∈ V ∧ 𝐴 ∈ V) → (𝐴 × 𝐴) ≼ ((𝐴 × 𝐴) +𝑐 𝐴))
75, 3, 6syl2anc 692 . . . 4 (ω ≼ 𝐴 → (𝐴 × 𝐴) ≼ ((𝐴 × 𝐴) +𝑐 𝐴))
8 cdacomen 8947 . . . 4 ((𝐴 × 𝐴) +𝑐 𝐴) ≈ (𝐴 +𝑐 (𝐴 × 𝐴))
9 domentr 7959 . . . 4 (((𝐴 × 𝐴) ≼ ((𝐴 × 𝐴) +𝑐 𝐴) ∧ ((𝐴 × 𝐴) +𝑐 𝐴) ≈ (𝐴 +𝑐 (𝐴 × 𝐴))) → (𝐴 × 𝐴) ≼ (𝐴 +𝑐 (𝐴 × 𝐴)))
107, 8, 9sylancl 693 . . 3 (ω ≼ 𝐴 → (𝐴 × 𝐴) ≼ (𝐴 +𝑐 (𝐴 × 𝐴)))
11 domtr 7953 . . . 4 ((𝒫 𝐴 ≼ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ≼ (𝐴 +𝑐 (𝐴 × 𝐴))) → 𝒫 𝐴 ≼ (𝐴 +𝑐 (𝐴 × 𝐴)))
1211expcom 451 . . 3 ((𝐴 × 𝐴) ≼ (𝐴 +𝑐 (𝐴 × 𝐴)) → (𝒫 𝐴 ≼ (𝐴 × 𝐴) → 𝒫 𝐴 ≼ (𝐴 +𝑐 (𝐴 × 𝐴))))
1310, 12syl 17 . 2 (ω ≼ 𝐴 → (𝒫 𝐴 ≼ (𝐴 × 𝐴) → 𝒫 𝐴 ≼ (𝐴 +𝑐 (𝐴 × 𝐴))))
141, 13mtod 189 1 (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 × 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 1987  Vcvv 3186  𝒫 cpw 4130   class class class wbr 4613   × cxp 5072  (class class class)co 6604  ωcom 7012  cen 7896  cdom 7897   +𝑐 ccda 8933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-seqom 7488  df-1o 7505  df-2o 7506  df-oadd 7509  df-omul 7510  df-oexp 7511  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-oi 8359  df-har 8407  df-cnf 8503  df-card 8709  df-cda 8934
This theorem is referenced by:  gchxpidm  9435
  Copyright terms: Public domain W3C validator