Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pythag Structured version   Visualization version   GIF version

Theorem pythag 24592
 Description: Pythagorean theorem. Given three distinct points A, B, and C that form a right triangle (with the right angle at C), prove a relationship between their segment lengths. This theorem is expressed using the complex number plane as a plane, where 𝐹 is the signed angle construct (as used in ang180 24589), 𝑋 is the distance of line segment BC, 𝑌 is the distance of line segment AC, 𝑍 is the distance of line segment AB (the hypotenuse), and 𝑂 is the signed right angle m/_ BCA. We use the law of cosines lawcos 24591 to prove this, along with simple trigonometry facts like coshalfpi 24266 and cosneg 14921. (Contributed by David A. Wheeler, 13-Jun-2015.)
Hypotheses
Ref Expression
lawcos.1 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
lawcos.2 𝑋 = (abs‘(𝐵𝐶))
lawcos.3 𝑌 = (abs‘(𝐴𝐶))
lawcos.4 𝑍 = (abs‘(𝐴𝐵))
lawcos.5 𝑂 = ((𝐵𝐶)𝐹(𝐴𝐶))
Assertion
Ref Expression
pythag (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (𝑍↑2) = ((𝑋↑2) + (𝑌↑2)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝑂(𝑥,𝑦)   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem pythag
StepHypRef Expression
1 lawcos.1 . . . 4 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
2 lawcos.2 . . . 4 𝑋 = (abs‘(𝐵𝐶))
3 lawcos.3 . . . 4 𝑌 = (abs‘(𝐴𝐶))
4 lawcos.4 . . . 4 𝑍 = (abs‘(𝐴𝐵))
5 lawcos.5 . . . 4 𝑂 = ((𝐵𝐶)𝐹(𝐴𝐶))
61, 2, 3, 4, 5lawcos 24591 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (𝑍↑2) = (((𝑋↑2) + (𝑌↑2)) − (2 · ((𝑋 · 𝑌) · (cos‘𝑂)))))
763adant3 1101 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (𝑍↑2) = (((𝑋↑2) + (𝑌↑2)) − (2 · ((𝑋 · 𝑌) · (cos‘𝑂)))))
8 elpri 4230 . . . . . . . . 9 (𝑂 ∈ {(π / 2), -(π / 2)} → (𝑂 = (π / 2) ∨ 𝑂 = -(π / 2)))
9 fveq2 6229 . . . . . . . . . . 11 (𝑂 = (π / 2) → (cos‘𝑂) = (cos‘(π / 2)))
10 coshalfpi 24266 . . . . . . . . . . 11 (cos‘(π / 2)) = 0
119, 10syl6eq 2701 . . . . . . . . . 10 (𝑂 = (π / 2) → (cos‘𝑂) = 0)
12 fveq2 6229 . . . . . . . . . . 11 (𝑂 = -(π / 2) → (cos‘𝑂) = (cos‘-(π / 2)))
13 cosneghalfpi 24267 . . . . . . . . . . 11 (cos‘-(π / 2)) = 0
1412, 13syl6eq 2701 . . . . . . . . . 10 (𝑂 = -(π / 2) → (cos‘𝑂) = 0)
1511, 14jaoi 393 . . . . . . . . 9 ((𝑂 = (π / 2) ∨ 𝑂 = -(π / 2)) → (cos‘𝑂) = 0)
168, 15syl 17 . . . . . . . 8 (𝑂 ∈ {(π / 2), -(π / 2)} → (cos‘𝑂) = 0)
17163ad2ant3 1104 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (cos‘𝑂) = 0)
1817oveq2d 6706 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → ((𝑋 · 𝑌) · (cos‘𝑂)) = ((𝑋 · 𝑌) · 0))
19 subcl 10318 . . . . . . . . . . . . 13 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐶) ∈ ℂ)
20193adant1 1099 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐶) ∈ ℂ)
21203ad2ant1 1102 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (𝐵𝐶) ∈ ℂ)
2221abscld 14219 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (abs‘(𝐵𝐶)) ∈ ℝ)
2322recnd 10106 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (abs‘(𝐵𝐶)) ∈ ℂ)
242, 23syl5eqel 2734 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → 𝑋 ∈ ℂ)
25 subcl 10318 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐶) ∈ ℂ)
26253adant2 1100 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐶) ∈ ℂ)
27263ad2ant1 1102 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (𝐴𝐶) ∈ ℂ)
2827abscld 14219 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (abs‘(𝐴𝐶)) ∈ ℝ)
2928recnd 10106 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (abs‘(𝐴𝐶)) ∈ ℂ)
303, 29syl5eqel 2734 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → 𝑌 ∈ ℂ)
3124, 30mulcld 10098 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (𝑋 · 𝑌) ∈ ℂ)
3231mul01d 10273 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → ((𝑋 · 𝑌) · 0) = 0)
3318, 32eqtrd 2685 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → ((𝑋 · 𝑌) · (cos‘𝑂)) = 0)
3433oveq2d 6706 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (2 · ((𝑋 · 𝑌) · (cos‘𝑂))) = (2 · 0))
35 2t0e0 11221 . . . 4 (2 · 0) = 0
3634, 35syl6eq 2701 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (2 · ((𝑋 · 𝑌) · (cos‘𝑂))) = 0)
3736oveq2d 6706 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (((𝑋↑2) + (𝑌↑2)) − (2 · ((𝑋 · 𝑌) · (cos‘𝑂)))) = (((𝑋↑2) + (𝑌↑2)) − 0))
3824sqcld 13046 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (𝑋↑2) ∈ ℂ)
3930sqcld 13046 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (𝑌↑2) ∈ ℂ)
4038, 39addcld 10097 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → ((𝑋↑2) + (𝑌↑2)) ∈ ℂ)
4140subid1d 10419 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (((𝑋↑2) + (𝑌↑2)) − 0) = ((𝑋↑2) + (𝑌↑2)))
427, 37, 413eqtrd 2689 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (𝑍↑2) = ((𝑋↑2) + (𝑌↑2)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ wo 382   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030   ≠ wne 2823   ∖ cdif 3604  {csn 4210  {cpr 4212  ‘cfv 5926  (class class class)co 6690   ↦ cmpt2 6692  ℂcc 9972  0cc0 9974   + caddc 9977   · cmul 9979   − cmin 10304  -cneg 10305   / cdiv 10722  2c2 11108  ↑cexp 12900  ℑcim 13882  abscabs 14018  cosccos 14839  πcpi 14841  logclog 24346 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-ef 14842  df-sin 14844  df-cos 14845  df-pi 14847  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-limc 23675  df-dv 23676  df-log 24348 This theorem is referenced by:  chordthmlem3  24606
 Copyright terms: Public domain W3C validator