Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pythagtriplem14 Structured version   Visualization version   GIF version

Theorem pythagtriplem14 15464
 Description: Lemma for pythagtrip 15470. Calculate the square of 𝑁. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypothesis
Ref Expression
pythagtriplem13.1 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)
Assertion
Ref Expression
pythagtriplem14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝑁↑2) = ((𝐶𝐴) / 2))

Proof of Theorem pythagtriplem14
StepHypRef Expression
1 pythagtriplem13.1 . . 3 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)
21oveq1i 6620 . 2 (𝑁↑2) = ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)
3 nncn 10979 . . . . . . . . 9 (𝐶 ∈ ℕ → 𝐶 ∈ ℂ)
4 nncn 10979 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
5 addcl 9969 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 + 𝐵) ∈ ℂ)
63, 4, 5syl2anr 495 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℂ)
76sqrtcld 14117 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (√‘(𝐶 + 𝐵)) ∈ ℂ)
8 subcl 10231 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶𝐵) ∈ ℂ)
93, 4, 8syl2anr 495 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶𝐵) ∈ ℂ)
109sqrtcld 14117 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (√‘(𝐶𝐵)) ∈ ℂ)
117, 10subcld 10343 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) ∈ ℂ)
12113adant1 1077 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) ∈ ℂ)
13123ad2ant1 1080 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) ∈ ℂ)
14 2cn 11042 . . . . 5 2 ∈ ℂ
15 2ne0 11064 . . . . 5 2 ≠ 0
16 sqdiv 12875 . . . . 5 ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2) = ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / (2↑2)))
1714, 15, 16mp3an23 1413 . . . 4 (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) ∈ ℂ → ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2) = ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / (2↑2)))
1813, 17syl 17 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2) = ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / (2↑2)))
1914sqvali 12890 . . . . 5 (2↑2) = (2 · 2)
2019oveq2i 6621 . . . 4 ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / (2↑2)) = ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / (2 · 2))
2113sqcld 12953 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) ∈ ℂ)
22 2cnne0 11193 . . . . . . 7 (2 ∈ ℂ ∧ 2 ≠ 0)
23 divdiv1 10687 . . . . . . 7 (((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / 2) / 2) = ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / (2 · 2)))
2422, 22, 23mp3an23 1413 . . . . . 6 ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) ∈ ℂ → (((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / 2) / 2) = ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / (2 · 2)))
2521, 24syl 17 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / 2) / 2) = ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / (2 · 2)))
26 simp12 1090 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 ∈ ℕ)
27 simp13 1091 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 ∈ ℕ)
2826, 27, 7syl2anc 692 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 + 𝐵)) ∈ ℂ)
2926, 27, 10syl2anc 692 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶𝐵)) ∈ ℂ)
30 binom2sub 12928 . . . . . . . . . 10 (((√‘(𝐶 + 𝐵)) ∈ ℂ ∧ (√‘(𝐶𝐵)) ∈ ℂ) → (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) = ((((√‘(𝐶 + 𝐵))↑2) − (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))))) + ((√‘(𝐶𝐵))↑2)))
3128, 29, 30syl2anc 692 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) = ((((√‘(𝐶 + 𝐵))↑2) − (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))))) + ((√‘(𝐶𝐵))↑2)))
32 nnre 10978 . . . . . . . . . . . . . . 15 (𝐶 ∈ ℕ → 𝐶 ∈ ℝ)
33 nnre 10978 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
34 readdcl 9970 . . . . . . . . . . . . . . 15 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 + 𝐵) ∈ ℝ)
3532, 33, 34syl2anr 495 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℝ)
36353adant1 1077 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℝ)
37363ad2ant1 1080 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 + 𝐵) ∈ ℝ)
3837recnd 10019 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 + 𝐵) ∈ ℂ)
39 resubcl 10296 . . . . . . . . . . . . . . 15 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶𝐵) ∈ ℝ)
4032, 33, 39syl2anr 495 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶𝐵) ∈ ℝ)
41403adant1 1077 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶𝐵) ∈ ℝ)
42413ad2ant1 1080 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶𝐵) ∈ ℝ)
4342recnd 10019 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶𝐵) ∈ ℂ)
4473adant1 1077 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (√‘(𝐶 + 𝐵)) ∈ ℂ)
45103adant1 1077 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (√‘(𝐶𝐵)) ∈ ℂ)
4644, 45mulcld 10011 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))) ∈ ℂ)
47 mulcl 9971 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))) ∈ ℂ) → (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵)))) ∈ ℂ)
4814, 46, 47sylancr 694 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵)))) ∈ ℂ)
49483ad2ant1 1080 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵)))) ∈ ℂ)
5038, 43, 49addsubd 10364 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶 + 𝐵) + (𝐶𝐵)) − (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))))) = (((𝐶 + 𝐵) − (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))))) + (𝐶𝐵)))
5127nncnd 10987 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 ∈ ℂ)
52 simp11 1089 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 ∈ ℕ)
5352nncnd 10987 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 ∈ ℂ)
54 subdi 10414 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (2 · (𝐶𝐴)) = ((2 · 𝐶) − (2 · 𝐴)))
5514, 54mp3an1 1408 . . . . . . . . . . . 12 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (2 · (𝐶𝐴)) = ((2 · 𝐶) − (2 · 𝐴)))
5651, 53, 55syl2anc 692 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · (𝐶𝐴)) = ((2 · 𝐶) − (2 · 𝐴)))
57 ppncan 10274 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐶 + 𝐵) + (𝐶𝐵)) = (𝐶 + 𝐶))
58573anidm13 1381 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) + (𝐶𝐵)) = (𝐶 + 𝐶))
59 2times 11096 . . . . . . . . . . . . . . . . 17 (𝐶 ∈ ℂ → (2 · 𝐶) = (𝐶 + 𝐶))
6059adantr 481 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · 𝐶) = (𝐶 + 𝐶))
6158, 60eqtr4d 2658 . . . . . . . . . . . . . . 15 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) + (𝐶𝐵)) = (2 · 𝐶))
623, 4, 61syl2anr 495 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐶 + 𝐵) + (𝐶𝐵)) = (2 · 𝐶))
63623adant1 1077 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐶 + 𝐵) + (𝐶𝐵)) = (2 · 𝐶))
64633ad2ant1 1080 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 + 𝐵) + (𝐶𝐵)) = (2 · 𝐶))
6526nncnd 10987 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 ∈ ℂ)
66 subsq 12919 . . . . . . . . . . . . . . . . . 18 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶↑2) − (𝐵↑2)) = ((𝐶 + 𝐵) · (𝐶𝐵)))
6751, 65, 66syl2anc 692 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶↑2) − (𝐵↑2)) = ((𝐶 + 𝐵) · (𝐶𝐵)))
68 oveq1 6617 . . . . . . . . . . . . . . . . . . 19 (((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) → (((𝐴↑2) + (𝐵↑2)) − (𝐵↑2)) = ((𝐶↑2) − (𝐵↑2)))
69683ad2ant2 1081 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐴↑2) + (𝐵↑2)) − (𝐵↑2)) = ((𝐶↑2) − (𝐵↑2)))
70 nncn 10979 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
7170sqcld 12953 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℕ → (𝐴↑2) ∈ ℂ)
72713ad2ant1 1080 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴↑2) ∈ ℂ)
734sqcld 12953 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 ∈ ℕ → (𝐵↑2) ∈ ℂ)
74733ad2ant2 1081 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐵↑2) ∈ ℂ)
7572, 74pncand 10344 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (((𝐴↑2) + (𝐵↑2)) − (𝐵↑2)) = (𝐴↑2))
76753ad2ant1 1080 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐴↑2) + (𝐵↑2)) − (𝐵↑2)) = (𝐴↑2))
7769, 76eqtr3d 2657 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶↑2) − (𝐵↑2)) = (𝐴↑2))
7867, 77eqtr3d 2657 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 + 𝐵) · (𝐶𝐵)) = (𝐴↑2))
7978fveq2d 6157 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘((𝐶 + 𝐵) · (𝐶𝐵))) = (√‘(𝐴↑2)))
8032adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈ ℝ)
8133adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐵 ∈ ℝ)
82 nngt0 11000 . . . . . . . . . . . . . . . . . . . . 21 (𝐶 ∈ ℕ → 0 < 𝐶)
8382adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 < 𝐶)
84 nngt0 11000 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 ∈ ℕ → 0 < 𝐵)
8584adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 < 𝐵)
8680, 81, 83, 85addgt0d 10553 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 < (𝐶 + 𝐵))
87 0re 9991 . . . . . . . . . . . . . . . . . . . 20 0 ∈ ℝ
88 ltle 10077 . . . . . . . . . . . . . . . . . . . 20 ((0 ∈ ℝ ∧ (𝐶 + 𝐵) ∈ ℝ) → (0 < (𝐶 + 𝐵) → 0 ≤ (𝐶 + 𝐵)))
8987, 88mpan 705 . . . . . . . . . . . . . . . . . . 19 ((𝐶 + 𝐵) ∈ ℝ → (0 < (𝐶 + 𝐵) → 0 ≤ (𝐶 + 𝐵)))
9035, 86, 89sylc 65 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 ≤ (𝐶 + 𝐵))
91903adant1 1077 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 ≤ (𝐶 + 𝐵))
92913ad2ant1 1080 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 ≤ (𝐶 + 𝐵))
93 pythagtriplem10 15456 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → 0 < (𝐶𝐵))
94933adant3 1079 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 < (𝐶𝐵))
95 ltle 10077 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ (𝐶𝐵) ∈ ℝ) → (0 < (𝐶𝐵) → 0 ≤ (𝐶𝐵)))
9687, 95mpan 705 . . . . . . . . . . . . . . . . 17 ((𝐶𝐵) ∈ ℝ → (0 < (𝐶𝐵) → 0 ≤ (𝐶𝐵)))
9742, 94, 96sylc 65 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 ≤ (𝐶𝐵))
9837, 92, 42, 97sqrtmuld 14104 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘((𝐶 + 𝐵) · (𝐶𝐵))) = ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))))
9979, 98eqtr3d 2657 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐴↑2)) = ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))))
100 nnre 10978 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
1011003ad2ant1 1080 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐴 ∈ ℝ)
1021013ad2ant1 1080 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 ∈ ℝ)
103 nnnn0 11250 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
104103nn0ge0d 11305 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℕ → 0 ≤ 𝐴)
1051043ad2ant1 1080 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 ≤ 𝐴)
1061053ad2ant1 1080 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 ≤ 𝐴)
107102, 106sqrtsqd 14099 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐴↑2)) = 𝐴)
10899, 107eqtr3d 2657 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))) = 𝐴)
109108oveq2d 6626 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵)))) = (2 · 𝐴))
11064, 109oveq12d 6628 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶 + 𝐵) + (𝐶𝐵)) − (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))))) = ((2 · 𝐶) − (2 · 𝐴)))
11156, 110eqtr4d 2658 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · (𝐶𝐴)) = (((𝐶 + 𝐵) + (𝐶𝐵)) − (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))))))
112 resqrtth 13937 . . . . . . . . . . . . 13 (((𝐶 + 𝐵) ∈ ℝ ∧ 0 ≤ (𝐶 + 𝐵)) → ((√‘(𝐶 + 𝐵))↑2) = (𝐶 + 𝐵))
11337, 92, 112syl2anc 692 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵))↑2) = (𝐶 + 𝐵))
114113oveq1d 6625 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((√‘(𝐶 + 𝐵))↑2) − (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))))) = ((𝐶 + 𝐵) − (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))))))
115 resqrtth 13937 . . . . . . . . . . . 12 (((𝐶𝐵) ∈ ℝ ∧ 0 ≤ (𝐶𝐵)) → ((√‘(𝐶𝐵))↑2) = (𝐶𝐵))
11642, 97, 115syl2anc 692 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶𝐵))↑2) = (𝐶𝐵))
117114, 116oveq12d 6628 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((((√‘(𝐶 + 𝐵))↑2) − (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))))) + ((√‘(𝐶𝐵))↑2)) = (((𝐶 + 𝐵) − (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))))) + (𝐶𝐵)))
11850, 111, 1173eqtr4rd 2666 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((((√‘(𝐶 + 𝐵))↑2) − (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶𝐵))))) + ((√‘(𝐶𝐵))↑2)) = (2 · (𝐶𝐴)))
11931, 118eqtrd 2655 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) = (2 · (𝐶𝐴)))
120119oveq1d 6625 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / 2) = ((2 · (𝐶𝐴)) / 2))
121 subcl 10231 . . . . . . . . . . 11 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐶𝐴) ∈ ℂ)
1223, 70, 121syl2anr 495 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶𝐴) ∈ ℂ)
1231223adant2 1078 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶𝐴) ∈ ℂ)
1241233ad2ant1 1080 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶𝐴) ∈ ℂ)
125 divcan3 10662 . . . . . . . . 9 (((𝐶𝐴) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · (𝐶𝐴)) / 2) = (𝐶𝐴))
12614, 15, 125mp3an23 1413 . . . . . . . 8 ((𝐶𝐴) ∈ ℂ → ((2 · (𝐶𝐴)) / 2) = (𝐶𝐴))
127124, 126syl 17 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((2 · (𝐶𝐴)) / 2) = (𝐶𝐴))
128120, 127eqtrd 2655 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / 2) = (𝐶𝐴))
129128oveq1d 6625 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / 2) / 2) = ((𝐶𝐴) / 2))
13025, 129eqtr3d 2657 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / (2 · 2)) = ((𝐶𝐴) / 2))
13120, 130syl5eq 2667 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))↑2) / (2↑2)) = ((𝐶𝐴) / 2))
13218, 131eqtrd 2655 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2) = ((𝐶𝐴) / 2))
1332, 132syl5eq 2667 1 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝑁↑2) = ((𝐶𝐴) / 2))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987   ≠ wne 2790   class class class wbr 4618  ‘cfv 5852  (class class class)co 6610  ℂcc 9885  ℝcr 9886  0cc0 9887  1c1 9888   + caddc 9890   · cmul 9892   < clt 10025   ≤ cle 10026   − cmin 10217   / cdiv 10635  ℕcn 10971  2c2 11021  ↑cexp 12807  √csqrt 13914   ∥ cdvds 14914   gcd cgcd 15147 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-er 7694  df-en 7907  df-dom 7908  df-sdom 7909  df-sup 8299  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-n0 11244  df-z 11329  df-uz 11639  df-rp 11784  df-seq 12749  df-exp 12808  df-cj 13780  df-re 13781  df-im 13782  df-sqrt 13916  df-abs 13917 This theorem is referenced by:  pythagtriplem15  15465  pythagtriplem17  15467
 Copyright terms: Public domain W3C validator