MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pythagtriplem18 Structured version   Visualization version   GIF version

Theorem pythagtriplem18 16171
Description: Lemma for pythagtrip 16173. Wrap the previous 𝑀 and 𝑁 up in quantifiers. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
pythagtriplem18 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (𝐴 = ((𝑚↑2) − (𝑛↑2)) ∧ 𝐵 = (2 · (𝑚 · 𝑛)) ∧ 𝐶 = ((𝑚↑2) + (𝑛↑2))))
Distinct variable groups:   𝐴,𝑚,𝑛   𝐵,𝑚,𝑛   𝐶,𝑚,𝑛

Proof of Theorem pythagtriplem18
StepHypRef Expression
1 eqid 2823 . . 3 (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)
21pythagtriplem13 16166 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) ∈ ℕ)
3 eqid 2823 . . 3 (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)
43pythagtriplem11 16164 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) ∈ ℕ)
53, 1pythagtriplem15 16168 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)))
63, 1pythagtriplem16 16169 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 = (2 · ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))))
73, 1pythagtriplem17 16170 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)))
8 oveq1 7165 . . . . . 6 (𝑛 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) → (𝑛↑2) = ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2))
98oveq2d 7174 . . . . 5 (𝑛 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) → ((𝑚↑2) − (𝑛↑2)) = ((𝑚↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)))
109eqeq2d 2834 . . . 4 (𝑛 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) → (𝐴 = ((𝑚↑2) − (𝑛↑2)) ↔ 𝐴 = ((𝑚↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2))))
11 oveq2 7166 . . . . . 6 (𝑛 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) → (𝑚 · 𝑛) = (𝑚 · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)))
1211oveq2d 7174 . . . . 5 (𝑛 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) → (2 · (𝑚 · 𝑛)) = (2 · (𝑚 · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))))
1312eqeq2d 2834 . . . 4 (𝑛 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) → (𝐵 = (2 · (𝑚 · 𝑛)) ↔ 𝐵 = (2 · (𝑚 · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)))))
148oveq2d 7174 . . . . 5 (𝑛 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) → ((𝑚↑2) + (𝑛↑2)) = ((𝑚↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)))
1514eqeq2d 2834 . . . 4 (𝑛 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) → (𝐶 = ((𝑚↑2) + (𝑛↑2)) ↔ 𝐶 = ((𝑚↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2))))
1610, 13, 153anbi123d 1432 . . 3 (𝑛 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) → ((𝐴 = ((𝑚↑2) − (𝑛↑2)) ∧ 𝐵 = (2 · (𝑚 · 𝑛)) ∧ 𝐶 = ((𝑚↑2) + (𝑛↑2))) ↔ (𝐴 = ((𝑚↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)) ∧ 𝐵 = (2 · (𝑚 · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))) ∧ 𝐶 = ((𝑚↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)))))
17 oveq1 7165 . . . . . 6 (𝑚 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) → (𝑚↑2) = ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2))
1817oveq1d 7173 . . . . 5 (𝑚 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) → ((𝑚↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)) = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)))
1918eqeq2d 2834 . . . 4 (𝑚 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) → (𝐴 = ((𝑚↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)) ↔ 𝐴 = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2))))
20 oveq1 7165 . . . . . 6 (𝑚 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) → (𝑚 · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)) = ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)))
2120oveq2d 7174 . . . . 5 (𝑚 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) → (2 · (𝑚 · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))) = (2 · ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))))
2221eqeq2d 2834 . . . 4 (𝑚 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) → (𝐵 = (2 · (𝑚 · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))) ↔ 𝐵 = (2 · ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)))))
2317oveq1d 7173 . . . . 5 (𝑚 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) → ((𝑚↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)) = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)))
2423eqeq2d 2834 . . . 4 (𝑚 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) → (𝐶 = ((𝑚↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)) ↔ 𝐶 = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2))))
2519, 22, 243anbi123d 1432 . . 3 (𝑚 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) → ((𝐴 = ((𝑚↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)) ∧ 𝐵 = (2 · (𝑚 · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))) ∧ 𝐶 = ((𝑚↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2))) ↔ (𝐴 = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)) ∧ 𝐵 = (2 · ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))) ∧ 𝐶 = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)))))
2616, 25rspc2ev 3637 . 2 (((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) ∈ ℕ ∧ (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) ∈ ℕ ∧ (𝐴 = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)) ∧ 𝐵 = (2 · ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))) ∧ 𝐶 = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)))) → ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (𝐴 = ((𝑚↑2) − (𝑛↑2)) ∧ 𝐵 = (2 · (𝑚 · 𝑛)) ∧ 𝐶 = ((𝑚↑2) + (𝑛↑2))))
272, 4, 5, 6, 7, 26syl113anc 1378 1 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (𝐴 = ((𝑚↑2) − (𝑛↑2)) ∧ 𝐵 = (2 · (𝑚 · 𝑛)) ∧ 𝐶 = ((𝑚↑2) + (𝑛↑2))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wrex 3141   class class class wbr 5068  cfv 6357  (class class class)co 7158  1c1 10540   + caddc 10542   · cmul 10544  cmin 10872   / cdiv 11299  cn 11640  2c2 11695  cexp 13432  csqrt 14594  cdvds 15609   gcd cgcd 15845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-dvds 15610  df-gcd 15846  df-prm 16018
This theorem is referenced by:  pythagtriplem19  16172
  Copyright terms: Public domain W3C validator