Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  q1peqb Structured version   Visualization version   GIF version

Theorem q1peqb 23852
 Description: Characterizing property of the polynomial quotient. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
q1pval.q 𝑄 = (quot1p𝑅)
q1pval.p 𝑃 = (Poly1𝑅)
q1pval.b 𝐵 = (Base‘𝑃)
q1pval.d 𝐷 = ( deg1𝑅)
q1pval.m = (-g𝑃)
q1pval.t · = (.r𝑃)
q1peqb.c 𝐶 = (Unic1p𝑅)
Assertion
Ref Expression
q1peqb ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ((𝑋𝐵 ∧ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺)) ↔ (𝐹𝑄𝐺) = 𝑋))

Proof of Theorem q1peqb
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 elex 3202 . . . 4 (𝑋𝐵𝑋 ∈ V)
21adantr 481 . . 3 ((𝑋𝐵 ∧ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺)) → 𝑋 ∈ V)
32a1i 11 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ((𝑋𝐵 ∧ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺)) → 𝑋 ∈ V))
4 ovex 6643 . . . 4 (𝐹𝑄𝐺) ∈ V
5 eleq1 2686 . . . 4 ((𝐹𝑄𝐺) = 𝑋 → ((𝐹𝑄𝐺) ∈ V ↔ 𝑋 ∈ V))
64, 5mpbii 223 . . 3 ((𝐹𝑄𝐺) = 𝑋𝑋 ∈ V)
76a1i 11 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ((𝐹𝑄𝐺) = 𝑋𝑋 ∈ V))
8 simpr 477 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑋 ∈ V) → 𝑋 ∈ V)
9 q1pval.p . . . . . . . 8 𝑃 = (Poly1𝑅)
10 q1pval.d . . . . . . . 8 𝐷 = ( deg1𝑅)
11 q1pval.b . . . . . . . 8 𝐵 = (Base‘𝑃)
12 q1pval.m . . . . . . . 8 = (-g𝑃)
13 eqid 2621 . . . . . . . 8 (0g𝑃) = (0g𝑃)
14 q1pval.t . . . . . . . 8 · = (.r𝑃)
15 simp1 1059 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝑅 ∈ Ring)
16 simp2 1060 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝐹𝐵)
17 q1peqb.c . . . . . . . . . 10 𝐶 = (Unic1p𝑅)
189, 11, 17uc1pcl 23841 . . . . . . . . 9 (𝐺𝐶𝐺𝐵)
19183ad2ant3 1082 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝐺𝐵)
209, 13, 17uc1pn0 23843 . . . . . . . . 9 (𝐺𝐶𝐺 ≠ (0g𝑃))
21203ad2ant3 1082 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝐺 ≠ (0g𝑃))
22 eqid 2621 . . . . . . . . . 10 (Unit‘𝑅) = (Unit‘𝑅)
2310, 22, 17uc1pldg 23846 . . . . . . . . 9 (𝐺𝐶 → ((coe1𝐺)‘(𝐷𝐺)) ∈ (Unit‘𝑅))
24233ad2ant3 1082 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ((coe1𝐺)‘(𝐷𝐺)) ∈ (Unit‘𝑅))
259, 10, 11, 12, 13, 14, 15, 16, 19, 21, 24, 22ply1divalg2 23836 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ∃!𝑞𝐵 (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺))
26 df-reu 2915 . . . . . . 7 (∃!𝑞𝐵 (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺) ↔ ∃!𝑞(𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)))
2725, 26sylib 208 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ∃!𝑞(𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)))
2827adantr 481 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑋 ∈ V) → ∃!𝑞(𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)))
29 eleq1 2686 . . . . . . 7 (𝑞 = 𝑋 → (𝑞𝐵𝑋𝐵))
30 oveq1 6622 . . . . . . . . . 10 (𝑞 = 𝑋 → (𝑞 · 𝐺) = (𝑋 · 𝐺))
3130oveq2d 6631 . . . . . . . . 9 (𝑞 = 𝑋 → (𝐹 (𝑞 · 𝐺)) = (𝐹 (𝑋 · 𝐺)))
3231fveq2d 6162 . . . . . . . 8 (𝑞 = 𝑋 → (𝐷‘(𝐹 (𝑞 · 𝐺))) = (𝐷‘(𝐹 (𝑋 · 𝐺))))
3332breq1d 4633 . . . . . . 7 (𝑞 = 𝑋 → ((𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺) ↔ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺)))
3429, 33anbi12d 746 . . . . . 6 (𝑞 = 𝑋 → ((𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)) ↔ (𝑋𝐵 ∧ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺))))
3534adantl 482 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑋 ∈ V) ∧ 𝑞 = 𝑋) → ((𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)) ↔ (𝑋𝐵 ∧ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺))))
368, 28, 35iota2d 5845 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑋 ∈ V) → ((𝑋𝐵 ∧ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺)) ↔ (℩𝑞(𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺))) = 𝑋))
37 q1pval.q . . . . . . . . 9 𝑄 = (quot1p𝑅)
3837, 9, 11, 10, 12, 14q1pval 23851 . . . . . . . 8 ((𝐹𝐵𝐺𝐵) → (𝐹𝑄𝐺) = (𝑞𝐵 (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)))
3916, 19, 38syl2anc 692 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐹𝑄𝐺) = (𝑞𝐵 (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)))
40 df-riota 6576 . . . . . . 7 (𝑞𝐵 (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)) = (℩𝑞(𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)))
4139, 40syl6eq 2671 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐹𝑄𝐺) = (℩𝑞(𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺))))
4241adantr 481 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑋 ∈ V) → (𝐹𝑄𝐺) = (℩𝑞(𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺))))
4342eqeq1d 2623 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑋 ∈ V) → ((𝐹𝑄𝐺) = 𝑋 ↔ (℩𝑞(𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺))) = 𝑋))
4436, 43bitr4d 271 . . 3 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑋 ∈ V) → ((𝑋𝐵 ∧ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺)) ↔ (𝐹𝑄𝐺) = 𝑋))
4544ex 450 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝑋 ∈ V → ((𝑋𝐵 ∧ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺)) ↔ (𝐹𝑄𝐺) = 𝑋)))
463, 7, 45pm5.21ndd 369 1 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ((𝑋𝐵 ∧ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺)) ↔ (𝐹𝑄𝐺) = 𝑋))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  ∃!weu 2469   ≠ wne 2790  ∃!wreu 2910  Vcvv 3190   class class class wbr 4623  ℩cio 5818  ‘cfv 5857  ℩crio 6575  (class class class)co 6615   < clt 10034  Basecbs 15800  .rcmulr 15882  0gc0g 16040  -gcsg 17364  Ringcrg 18487  Unitcui 18579  Poly1cpl1 19487  coe1cco1 19488   deg1 cdg1 23752  Unic1pcuc1p 23824  quot1pcq1p 23825 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974  ax-addf 9975  ax-mulf 9976 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-iin 4495  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-of 6862  df-ofr 6863  df-om 7028  df-1st 7128  df-2nd 7129  df-supp 7256  df-tpos 7312  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-2o 7521  df-oadd 7524  df-er 7702  df-map 7819  df-pm 7820  df-ixp 7869  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-fsupp 8236  df-sup 8308  df-oi 8375  df-card 8725  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-5 11042  df-6 11043  df-7 11044  df-8 11045  df-9 11046  df-n0 11253  df-z 11338  df-dec 11454  df-uz 11648  df-fz 12285  df-fzo 12423  df-seq 12758  df-hash 13074  df-struct 15802  df-ndx 15803  df-slot 15804  df-base 15805  df-sets 15806  df-ress 15807  df-plusg 15894  df-mulr 15895  df-starv 15896  df-sca 15897  df-vsca 15898  df-tset 15900  df-ple 15901  df-ds 15904  df-unif 15905  df-0g 16042  df-gsum 16043  df-mre 16186  df-mrc 16187  df-acs 16189  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-mhm 17275  df-submnd 17276  df-grp 17365  df-minusg 17366  df-sbg 17367  df-mulg 17481  df-subg 17531  df-ghm 17598  df-cntz 17690  df-cmn 18135  df-abl 18136  df-mgp 18430  df-ur 18442  df-ring 18489  df-cring 18490  df-oppr 18563  df-dvdsr 18581  df-unit 18582  df-invr 18612  df-subrg 18718  df-lmod 18805  df-lss 18873  df-rlreg 19223  df-psr 19296  df-mvr 19297  df-mpl 19298  df-opsr 19300  df-psr1 19490  df-vr1 19491  df-ply1 19492  df-coe1 19493  df-cnfld 19687  df-mdeg 23753  df-deg1 23754  df-uc1p 23829  df-q1p 23830 This theorem is referenced by:  q1pcl  23853  r1pdeglt  23856  dvdsq1p  23858
 Copyright terms: Public domain W3C validator