MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qaa Structured version   Visualization version   GIF version

Theorem qaa 24059
Description: Every rational number is algebraic. (Contributed by Mario Carneiro, 23-Jul-2014.)
Assertion
Ref Expression
qaa (𝐴 ∈ ℚ → 𝐴 ∈ 𝔸)

Proof of Theorem qaa
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qcn 11787 . 2 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
2 qsscn 11784 . . . . . . 7 ℚ ⊆ ℂ
3 1z 11392 . . . . . . . 8 1 ∈ ℤ
4 zq 11779 . . . . . . . 8 (1 ∈ ℤ → 1 ∈ ℚ)
53, 4ax-mp 5 . . . . . . 7 1 ∈ ℚ
6 plyid 23946 . . . . . . 7 ((ℚ ⊆ ℂ ∧ 1 ∈ ℚ) → Xp ∈ (Poly‘ℚ))
72, 5, 6mp2an 707 . . . . . 6 Xp ∈ (Poly‘ℚ)
87a1i 11 . . . . 5 (𝐴 ∈ ℚ → Xp ∈ (Poly‘ℚ))
9 plyconst 23943 . . . . . 6 ((ℚ ⊆ ℂ ∧ 𝐴 ∈ ℚ) → (ℂ × {𝐴}) ∈ (Poly‘ℚ))
102, 9mpan 705 . . . . 5 (𝐴 ∈ ℚ → (ℂ × {𝐴}) ∈ (Poly‘ℚ))
11 qaddcl 11789 . . . . . 6 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → (𝑥 + 𝑦) ∈ ℚ)
1211adantl 482 . . . . 5 ((𝐴 ∈ ℚ ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝑥 + 𝑦) ∈ ℚ)
13 qmulcl 11791 . . . . . 6 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → (𝑥 · 𝑦) ∈ ℚ)
1413adantl 482 . . . . 5 ((𝐴 ∈ ℚ ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝑥 · 𝑦) ∈ ℚ)
15 qnegcl 11790 . . . . . . 7 (1 ∈ ℚ → -1 ∈ ℚ)
165, 15ax-mp 5 . . . . . 6 -1 ∈ ℚ
1716a1i 11 . . . . 5 (𝐴 ∈ ℚ → -1 ∈ ℚ)
188, 10, 12, 14, 17plysub 23956 . . . 4 (𝐴 ∈ ℚ → (Xp𝑓 − (ℂ × {𝐴})) ∈ (Poly‘ℚ))
19 peano2cn 10193 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ)
201, 19syl 17 . . . . 5 (𝐴 ∈ ℚ → (𝐴 + 1) ∈ ℂ)
21 fnresi 5996 . . . . . . . . . . 11 ( I ↾ ℂ) Fn ℂ
22 df-idp 23926 . . . . . . . . . . . 12 Xp = ( I ↾ ℂ)
2322fneq1i 5973 . . . . . . . . . . 11 (Xp Fn ℂ ↔ ( I ↾ ℂ) Fn ℂ)
2421, 23mpbir 221 . . . . . . . . . 10 Xp Fn ℂ
2524a1i 11 . . . . . . . . 9 (𝐴 ∈ ℚ → Xp Fn ℂ)
26 fnconstg 6080 . . . . . . . . 9 (𝐴 ∈ ℚ → (ℂ × {𝐴}) Fn ℂ)
27 cnex 10002 . . . . . . . . . 10 ℂ ∈ V
2827a1i 11 . . . . . . . . 9 (𝐴 ∈ ℚ → ℂ ∈ V)
29 inidm 3814 . . . . . . . . 9 (ℂ ∩ ℂ) = ℂ
3022fveq1i 6179 . . . . . . . . . . 11 (Xp‘(𝐴 + 1)) = (( I ↾ ℂ)‘(𝐴 + 1))
31 fvresi 6424 . . . . . . . . . . 11 ((𝐴 + 1) ∈ ℂ → (( I ↾ ℂ)‘(𝐴 + 1)) = (𝐴 + 1))
3230, 31syl5eq 2666 . . . . . . . . . 10 ((𝐴 + 1) ∈ ℂ → (Xp‘(𝐴 + 1)) = (𝐴 + 1))
3332adantl 482 . . . . . . . . 9 ((𝐴 ∈ ℚ ∧ (𝐴 + 1) ∈ ℂ) → (Xp‘(𝐴 + 1)) = (𝐴 + 1))
34 fvconst2g 6452 . . . . . . . . 9 ((𝐴 ∈ ℚ ∧ (𝐴 + 1) ∈ ℂ) → ((ℂ × {𝐴})‘(𝐴 + 1)) = 𝐴)
3525, 26, 28, 28, 29, 33, 34ofval 6891 . . . . . . . 8 ((𝐴 ∈ ℚ ∧ (𝐴 + 1) ∈ ℂ) → ((Xp𝑓 − (ℂ × {𝐴}))‘(𝐴 + 1)) = ((𝐴 + 1) − 𝐴))
3620, 35mpdan 701 . . . . . . 7 (𝐴 ∈ ℚ → ((Xp𝑓 − (ℂ × {𝐴}))‘(𝐴 + 1)) = ((𝐴 + 1) − 𝐴))
37 ax-1cn 9979 . . . . . . . 8 1 ∈ ℂ
38 pncan2 10273 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 𝐴) = 1)
391, 37, 38sylancl 693 . . . . . . 7 (𝐴 ∈ ℚ → ((𝐴 + 1) − 𝐴) = 1)
4036, 39eqtrd 2654 . . . . . 6 (𝐴 ∈ ℚ → ((Xp𝑓 − (ℂ × {𝐴}))‘(𝐴 + 1)) = 1)
41 ax-1ne0 9990 . . . . . . 7 1 ≠ 0
4241a1i 11 . . . . . 6 (𝐴 ∈ ℚ → 1 ≠ 0)
4340, 42eqnetrd 2858 . . . . 5 (𝐴 ∈ ℚ → ((Xp𝑓 − (ℂ × {𝐴}))‘(𝐴 + 1)) ≠ 0)
44 ne0p 23944 . . . . 5 (((𝐴 + 1) ∈ ℂ ∧ ((Xp𝑓 − (ℂ × {𝐴}))‘(𝐴 + 1)) ≠ 0) → (Xp𝑓 − (ℂ × {𝐴})) ≠ 0𝑝)
4520, 43, 44syl2anc 692 . . . 4 (𝐴 ∈ ℚ → (Xp𝑓 − (ℂ × {𝐴})) ≠ 0𝑝)
46 eldifsn 4308 . . . 4 ((Xp𝑓 − (ℂ × {𝐴})) ∈ ((Poly‘ℚ) ∖ {0𝑝}) ↔ ((Xp𝑓 − (ℂ × {𝐴})) ∈ (Poly‘ℚ) ∧ (Xp𝑓 − (ℂ × {𝐴})) ≠ 0𝑝))
4718, 45, 46sylanbrc 697 . . 3 (𝐴 ∈ ℚ → (Xp𝑓 − (ℂ × {𝐴})) ∈ ((Poly‘ℚ) ∖ {0𝑝}))
4822fveq1i 6179 . . . . . . . 8 (Xp𝐴) = (( I ↾ ℂ)‘𝐴)
49 fvresi 6424 . . . . . . . 8 (𝐴 ∈ ℂ → (( I ↾ ℂ)‘𝐴) = 𝐴)
5048, 49syl5eq 2666 . . . . . . 7 (𝐴 ∈ ℂ → (Xp𝐴) = 𝐴)
5150adantl 482 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝐴 ∈ ℂ) → (Xp𝐴) = 𝐴)
52 fvconst2g 6452 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝐴 ∈ ℂ) → ((ℂ × {𝐴})‘𝐴) = 𝐴)
5325, 26, 28, 28, 29, 51, 52ofval 6891 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝐴 ∈ ℂ) → ((Xp𝑓 − (ℂ × {𝐴}))‘𝐴) = (𝐴𝐴))
541, 53mpdan 701 . . . 4 (𝐴 ∈ ℚ → ((Xp𝑓 − (ℂ × {𝐴}))‘𝐴) = (𝐴𝐴))
551subidd 10365 . . . 4 (𝐴 ∈ ℚ → (𝐴𝐴) = 0)
5654, 55eqtrd 2654 . . 3 (𝐴 ∈ ℚ → ((Xp𝑓 − (ℂ × {𝐴}))‘𝐴) = 0)
57 fveq1 6177 . . . . 5 (𝑓 = (Xp𝑓 − (ℂ × {𝐴})) → (𝑓𝐴) = ((Xp𝑓 − (ℂ × {𝐴}))‘𝐴))
5857eqeq1d 2622 . . . 4 (𝑓 = (Xp𝑓 − (ℂ × {𝐴})) → ((𝑓𝐴) = 0 ↔ ((Xp𝑓 − (ℂ × {𝐴}))‘𝐴) = 0))
5958rspcev 3304 . . 3 (((Xp𝑓 − (ℂ × {𝐴})) ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ ((Xp𝑓 − (ℂ × {𝐴}))‘𝐴) = 0) → ∃𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑓𝐴) = 0)
6047, 56, 59syl2anc 692 . 2 (𝐴 ∈ ℚ → ∃𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑓𝐴) = 0)
61 elqaa 24058 . 2 (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑓𝐴) = 0))
621, 60, 61sylanbrc 697 1 (𝐴 ∈ ℚ → 𝐴 ∈ 𝔸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1481  wcel 1988  wne 2791  wrex 2910  Vcvv 3195  cdif 3564  wss 3567  {csn 4168   I cid 5013   × cxp 5102  cres 5106   Fn wfn 5871  cfv 5876  (class class class)co 6635  𝑓 cof 6880  cc 9919  0cc0 9921  1c1 9922   + caddc 9924   · cmul 9926  cmin 10251  -cneg 10252  cz 11362  cq 11773  0𝑝c0p 23417  Polycply 23921  Xpcidp 23922  𝔸caa 24050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999  ax-addf 10000
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-fal 1487  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-of 6882  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-oadd 7549  df-er 7727  df-map 7844  df-pm 7845  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-sup 8333  df-inf 8334  df-oi 8400  df-card 8750  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-n0 11278  df-z 11363  df-uz 11673  df-q 11774  df-rp 11818  df-fz 12312  df-fzo 12450  df-fl 12576  df-mod 12652  df-seq 12785  df-exp 12844  df-hash 13101  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-clim 14200  df-rlim 14201  df-sum 14398  df-0p 23418  df-ply 23925  df-idp 23926  df-coe 23927  df-dgr 23928  df-aa 24051
This theorem is referenced by:  qssaa  24060
  Copyright terms: Public domain W3C validator