MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qabvexp Structured version   Visualization version   GIF version

Theorem qabvexp 25215
Description: Induct the product rule abvmul 18750 to find the absolute value of a power. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
Assertion
Ref Expression
qabvexp ((𝐹𝐴𝑀 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (𝐹‘(𝑀𝑁)) = ((𝐹𝑀)↑𝑁))

Proof of Theorem qabvexp
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6612 . . . . . . 7 (𝑘 = 0 → (𝑀𝑘) = (𝑀↑0))
21fveq2d 6152 . . . . . 6 (𝑘 = 0 → (𝐹‘(𝑀𝑘)) = (𝐹‘(𝑀↑0)))
3 oveq2 6612 . . . . . 6 (𝑘 = 0 → ((𝐹𝑀)↑𝑘) = ((𝐹𝑀)↑0))
42, 3eqeq12d 2636 . . . . 5 (𝑘 = 0 → ((𝐹‘(𝑀𝑘)) = ((𝐹𝑀)↑𝑘) ↔ (𝐹‘(𝑀↑0)) = ((𝐹𝑀)↑0)))
54imbi2d 330 . . . 4 (𝑘 = 0 → (((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀𝑘)) = ((𝐹𝑀)↑𝑘)) ↔ ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀↑0)) = ((𝐹𝑀)↑0))))
6 oveq2 6612 . . . . . . 7 (𝑘 = 𝑛 → (𝑀𝑘) = (𝑀𝑛))
76fveq2d 6152 . . . . . 6 (𝑘 = 𝑛 → (𝐹‘(𝑀𝑘)) = (𝐹‘(𝑀𝑛)))
8 oveq2 6612 . . . . . 6 (𝑘 = 𝑛 → ((𝐹𝑀)↑𝑘) = ((𝐹𝑀)↑𝑛))
97, 8eqeq12d 2636 . . . . 5 (𝑘 = 𝑛 → ((𝐹‘(𝑀𝑘)) = ((𝐹𝑀)↑𝑘) ↔ (𝐹‘(𝑀𝑛)) = ((𝐹𝑀)↑𝑛)))
109imbi2d 330 . . . 4 (𝑘 = 𝑛 → (((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀𝑘)) = ((𝐹𝑀)↑𝑘)) ↔ ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀𝑛)) = ((𝐹𝑀)↑𝑛))))
11 oveq2 6612 . . . . . . 7 (𝑘 = (𝑛 + 1) → (𝑀𝑘) = (𝑀↑(𝑛 + 1)))
1211fveq2d 6152 . . . . . 6 (𝑘 = (𝑛 + 1) → (𝐹‘(𝑀𝑘)) = (𝐹‘(𝑀↑(𝑛 + 1))))
13 oveq2 6612 . . . . . 6 (𝑘 = (𝑛 + 1) → ((𝐹𝑀)↑𝑘) = ((𝐹𝑀)↑(𝑛 + 1)))
1412, 13eqeq12d 2636 . . . . 5 (𝑘 = (𝑛 + 1) → ((𝐹‘(𝑀𝑘)) = ((𝐹𝑀)↑𝑘) ↔ (𝐹‘(𝑀↑(𝑛 + 1))) = ((𝐹𝑀)↑(𝑛 + 1))))
1514imbi2d 330 . . . 4 (𝑘 = (𝑛 + 1) → (((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀𝑘)) = ((𝐹𝑀)↑𝑘)) ↔ ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀↑(𝑛 + 1))) = ((𝐹𝑀)↑(𝑛 + 1)))))
16 oveq2 6612 . . . . . . 7 (𝑘 = 𝑁 → (𝑀𝑘) = (𝑀𝑁))
1716fveq2d 6152 . . . . . 6 (𝑘 = 𝑁 → (𝐹‘(𝑀𝑘)) = (𝐹‘(𝑀𝑁)))
18 oveq2 6612 . . . . . 6 (𝑘 = 𝑁 → ((𝐹𝑀)↑𝑘) = ((𝐹𝑀)↑𝑁))
1917, 18eqeq12d 2636 . . . . 5 (𝑘 = 𝑁 → ((𝐹‘(𝑀𝑘)) = ((𝐹𝑀)↑𝑘) ↔ (𝐹‘(𝑀𝑁)) = ((𝐹𝑀)↑𝑁)))
2019imbi2d 330 . . . 4 (𝑘 = 𝑁 → (((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀𝑘)) = ((𝐹𝑀)↑𝑘)) ↔ ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀𝑁)) = ((𝐹𝑀)↑𝑁))))
21 ax-1ne0 9949 . . . . . . 7 1 ≠ 0
22 qabsabv.a . . . . . . . 8 𝐴 = (AbsVal‘𝑄)
23 qrng.q . . . . . . . . 9 𝑄 = (ℂflds ℚ)
2423qrng1 25211 . . . . . . . 8 1 = (1r𝑄)
2523qrng0 25210 . . . . . . . 8 0 = (0g𝑄)
2622, 24, 25abv1z 18753 . . . . . . 7 ((𝐹𝐴 ∧ 1 ≠ 0) → (𝐹‘1) = 1)
2721, 26mpan2 706 . . . . . 6 (𝐹𝐴 → (𝐹‘1) = 1)
2827adantr 481 . . . . 5 ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘1) = 1)
29 qcn 11746 . . . . . . . 8 (𝑀 ∈ ℚ → 𝑀 ∈ ℂ)
3029adantl 482 . . . . . . 7 ((𝐹𝐴𝑀 ∈ ℚ) → 𝑀 ∈ ℂ)
3130exp0d 12942 . . . . . 6 ((𝐹𝐴𝑀 ∈ ℚ) → (𝑀↑0) = 1)
3231fveq2d 6152 . . . . 5 ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀↑0)) = (𝐹‘1))
3323qrngbas 25208 . . . . . . . 8 ℚ = (Base‘𝑄)
3422, 33abvcl 18745 . . . . . . 7 ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹𝑀) ∈ ℝ)
3534recnd 10012 . . . . . 6 ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹𝑀) ∈ ℂ)
3635exp0d 12942 . . . . 5 ((𝐹𝐴𝑀 ∈ ℚ) → ((𝐹𝑀)↑0) = 1)
3728, 32, 363eqtr4d 2665 . . . 4 ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀↑0)) = ((𝐹𝑀)↑0))
38 oveq1 6611 . . . . . . 7 ((𝐹‘(𝑀𝑛)) = ((𝐹𝑀)↑𝑛) → ((𝐹‘(𝑀𝑛)) · (𝐹𝑀)) = (((𝐹𝑀)↑𝑛) · (𝐹𝑀)))
39 expp1 12807 . . . . . . . . . . 11 ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (𝑀↑(𝑛 + 1)) = ((𝑀𝑛) · 𝑀))
4030, 39sylan 488 . . . . . . . . . 10 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → (𝑀↑(𝑛 + 1)) = ((𝑀𝑛) · 𝑀))
4140fveq2d 6152 . . . . . . . . 9 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → (𝐹‘(𝑀↑(𝑛 + 1))) = (𝐹‘((𝑀𝑛) · 𝑀)))
42 simpll 789 . . . . . . . . . 10 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → 𝐹𝐴)
43 qexpcl 12816 . . . . . . . . . . 11 ((𝑀 ∈ ℚ ∧ 𝑛 ∈ ℕ0) → (𝑀𝑛) ∈ ℚ)
4443adantll 749 . . . . . . . . . 10 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → (𝑀𝑛) ∈ ℚ)
45 simplr 791 . . . . . . . . . 10 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → 𝑀 ∈ ℚ)
46 qex 11744 . . . . . . . . . . . 12 ℚ ∈ V
47 cnfldmul 19671 . . . . . . . . . . . . 13 · = (.r‘ℂfld)
4823, 47ressmulr 15927 . . . . . . . . . . . 12 (ℚ ∈ V → · = (.r𝑄))
4946, 48ax-mp 5 . . . . . . . . . . 11 · = (.r𝑄)
5022, 33, 49abvmul 18750 . . . . . . . . . 10 ((𝐹𝐴 ∧ (𝑀𝑛) ∈ ℚ ∧ 𝑀 ∈ ℚ) → (𝐹‘((𝑀𝑛) · 𝑀)) = ((𝐹‘(𝑀𝑛)) · (𝐹𝑀)))
5142, 44, 45, 50syl3anc 1323 . . . . . . . . 9 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → (𝐹‘((𝑀𝑛) · 𝑀)) = ((𝐹‘(𝑀𝑛)) · (𝐹𝑀)))
5241, 51eqtrd 2655 . . . . . . . 8 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → (𝐹‘(𝑀↑(𝑛 + 1))) = ((𝐹‘(𝑀𝑛)) · (𝐹𝑀)))
53 expp1 12807 . . . . . . . . 9 (((𝐹𝑀) ∈ ℂ ∧ 𝑛 ∈ ℕ0) → ((𝐹𝑀)↑(𝑛 + 1)) = (((𝐹𝑀)↑𝑛) · (𝐹𝑀)))
5435, 53sylan 488 . . . . . . . 8 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → ((𝐹𝑀)↑(𝑛 + 1)) = (((𝐹𝑀)↑𝑛) · (𝐹𝑀)))
5552, 54eqeq12d 2636 . . . . . . 7 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → ((𝐹‘(𝑀↑(𝑛 + 1))) = ((𝐹𝑀)↑(𝑛 + 1)) ↔ ((𝐹‘(𝑀𝑛)) · (𝐹𝑀)) = (((𝐹𝑀)↑𝑛) · (𝐹𝑀))))
5638, 55syl5ibr 236 . . . . . 6 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → ((𝐹‘(𝑀𝑛)) = ((𝐹𝑀)↑𝑛) → (𝐹‘(𝑀↑(𝑛 + 1))) = ((𝐹𝑀)↑(𝑛 + 1))))
5756expcom 451 . . . . 5 (𝑛 ∈ ℕ0 → ((𝐹𝐴𝑀 ∈ ℚ) → ((𝐹‘(𝑀𝑛)) = ((𝐹𝑀)↑𝑛) → (𝐹‘(𝑀↑(𝑛 + 1))) = ((𝐹𝑀)↑(𝑛 + 1)))))
5857a2d 29 . . . 4 (𝑛 ∈ ℕ0 → (((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀𝑛)) = ((𝐹𝑀)↑𝑛)) → ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀↑(𝑛 + 1))) = ((𝐹𝑀)↑(𝑛 + 1)))))
595, 10, 15, 20, 37, 58nn0ind 11416 . . 3 (𝑁 ∈ ℕ0 → ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀𝑁)) = ((𝐹𝑀)↑𝑁)))
6059com12 32 . 2 ((𝐹𝐴𝑀 ∈ ℚ) → (𝑁 ∈ ℕ0 → (𝐹‘(𝑀𝑁)) = ((𝐹𝑀)↑𝑁)))
61603impia 1258 1 ((𝐹𝐴𝑀 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (𝐹‘(𝑀𝑁)) = ((𝐹𝑀)↑𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  Vcvv 3186  cfv 5847  (class class class)co 6604  cc 9878  0cc0 9880  1c1 9881   + caddc 9883   · cmul 9885  0cn0 11236  cq 11732  cexp 12800  s cress 15782  .rcmulr 15863  AbsValcabv 18737  fldccnfld 19665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-tpos 7297  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-ico 12123  df-fz 12269  df-seq 12742  df-exp 12801  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-0g 16023  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-grp 17346  df-minusg 17347  df-subg 17512  df-cmn 18116  df-mgp 18411  df-ur 18423  df-ring 18470  df-cring 18471  df-oppr 18544  df-dvdsr 18562  df-unit 18563  df-invr 18593  df-dvr 18604  df-drng 18670  df-subrg 18699  df-abv 18738  df-cnfld 19666
This theorem is referenced by:  ostth2lem2  25223  ostth2lem3  25224  ostth3  25227
  Copyright terms: Public domain W3C validator