MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qbtwnre Structured version   Visualization version   GIF version

Theorem qbtwnre 11863
Description: The rational numbers are dense in : any two real numbers have a rational between them. Exercise 6 of [Apostol] p. 28. (Contributed by NM, 18-Nov-2004.) (Proof shortened by Mario Carneiro, 13-Jun-2014.)
Assertion
Ref Expression
qbtwnre ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem qbtwnre
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 posdif 10370 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
2 resubcl 10196 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵𝐴) ∈ ℝ)
3 nnrecl 11137 . . . . . . 7 (((𝐵𝐴) ∈ ℝ ∧ 0 < (𝐵𝐴)) → ∃𝑦 ∈ ℕ (1 / 𝑦) < (𝐵𝐴))
42, 3sylan 486 . . . . . 6 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 0 < (𝐵𝐴)) → ∃𝑦 ∈ ℕ (1 / 𝑦) < (𝐵𝐴))
54ex 448 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < (𝐵𝐴) → ∃𝑦 ∈ ℕ (1 / 𝑦) < (𝐵𝐴)))
65ancoms 467 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < (𝐵𝐴) → ∃𝑦 ∈ ℕ (1 / 𝑦) < (𝐵𝐴)))
71, 6sylbid 228 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ∃𝑦 ∈ ℕ (1 / 𝑦) < (𝐵𝐴)))
8 nnre 10874 . . . . . . . . 9 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
98adantl 480 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℝ)
10 simplr 787 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → 𝐵 ∈ ℝ)
119, 10remulcld 9926 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝑦 · 𝐵) ∈ ℝ)
12 peano2rem 10199 . . . . . . 7 ((𝑦 · 𝐵) ∈ ℝ → ((𝑦 · 𝐵) − 1) ∈ ℝ)
1311, 12syl 17 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((𝑦 · 𝐵) − 1) ∈ ℝ)
14 zbtwnre 11618 . . . . . 6 (((𝑦 · 𝐵) − 1) ∈ ℝ → ∃!𝑧 ∈ ℤ (((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)))
15 reurex 3136 . . . . . 6 (∃!𝑧 ∈ ℤ (((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)) → ∃𝑧 ∈ ℤ (((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)))
1613, 14, 153syl 18 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ∃𝑧 ∈ ℤ (((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)))
17 znq 11624 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑧 / 𝑦) ∈ ℚ)
1817ancoms 467 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (𝑧 / 𝑦) ∈ ℚ)
1918adantl 480 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (𝑧 / 𝑦) ∈ ℚ)
20 an32 834 . . . . . . . . . 10 (((((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)) ∧ (1 / 𝑦) < (𝐵𝐴)) ↔ ((((𝑦 · 𝐵) − 1) ≤ 𝑧 ∧ (1 / 𝑦) < (𝐵𝐴)) ∧ 𝑧 < (((𝑦 · 𝐵) − 1) + 1)))
218ad2antrl 759 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → 𝑦 ∈ ℝ)
22 simpll 785 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → 𝐴 ∈ ℝ)
2321, 22remulcld 9926 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (𝑦 · 𝐴) ∈ ℝ)
2413adantrr 748 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → ((𝑦 · 𝐵) − 1) ∈ ℝ)
25 zre 11214 . . . . . . . . . . . . . 14 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
2625ad2antll 760 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → 𝑧 ∈ ℝ)
27 ltletr 9980 . . . . . . . . . . . . 13 (((𝑦 · 𝐴) ∈ ℝ ∧ ((𝑦 · 𝐵) − 1) ∈ ℝ ∧ 𝑧 ∈ ℝ) → (((𝑦 · 𝐴) < ((𝑦 · 𝐵) − 1) ∧ ((𝑦 · 𝐵) − 1) ≤ 𝑧) → (𝑦 · 𝐴) < 𝑧))
2823, 24, 26, 27syl3anc 1317 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (((𝑦 · 𝐴) < ((𝑦 · 𝐵) − 1) ∧ ((𝑦 · 𝐵) − 1) ≤ 𝑧) → (𝑦 · 𝐴) < 𝑧))
2921recnd 9924 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → 𝑦 ∈ ℂ)
30 simplr 787 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → 𝐵 ∈ ℝ)
3130recnd 9924 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → 𝐵 ∈ ℂ)
3222recnd 9924 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → 𝐴 ∈ ℂ)
3329, 31, 32subdid 10336 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (𝑦 · (𝐵𝐴)) = ((𝑦 · 𝐵) − (𝑦 · 𝐴)))
3433breq2d 4589 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (1 < (𝑦 · (𝐵𝐴)) ↔ 1 < ((𝑦 · 𝐵) − (𝑦 · 𝐴))))
35 1red 9911 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → 1 ∈ ℝ)
3630, 22resubcld 10309 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (𝐵𝐴) ∈ ℝ)
37 nngt0 10896 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ → 0 < 𝑦)
3837ad2antrl 759 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → 0 < 𝑦)
39 ltdivmul 10747 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ (𝐵𝐴) ∈ ℝ ∧ (𝑦 ∈ ℝ ∧ 0 < 𝑦)) → ((1 / 𝑦) < (𝐵𝐴) ↔ 1 < (𝑦 · (𝐵𝐴))))
4035, 36, 21, 38, 39syl112anc 1321 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → ((1 / 𝑦) < (𝐵𝐴) ↔ 1 < (𝑦 · (𝐵𝐴))))
4111adantrr 748 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (𝑦 · 𝐵) ∈ ℝ)
42 ltsub13 10358 . . . . . . . . . . . . . . . 16 (((𝑦 · 𝐴) ∈ ℝ ∧ (𝑦 · 𝐵) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑦 · 𝐴) < ((𝑦 · 𝐵) − 1) ↔ 1 < ((𝑦 · 𝐵) − (𝑦 · 𝐴))))
4323, 41, 35, 42syl3anc 1317 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → ((𝑦 · 𝐴) < ((𝑦 · 𝐵) − 1) ↔ 1 < ((𝑦 · 𝐵) − (𝑦 · 𝐴))))
4434, 40, 433bitr4rd 299 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → ((𝑦 · 𝐴) < ((𝑦 · 𝐵) − 1) ↔ (1 / 𝑦) < (𝐵𝐴)))
4544anbi1d 736 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (((𝑦 · 𝐴) < ((𝑦 · 𝐵) − 1) ∧ ((𝑦 · 𝐵) − 1) ≤ 𝑧) ↔ ((1 / 𝑦) < (𝐵𝐴) ∧ ((𝑦 · 𝐵) − 1) ≤ 𝑧)))
46 ancom 464 . . . . . . . . . . . . 13 (((1 / 𝑦) < (𝐵𝐴) ∧ ((𝑦 · 𝐵) − 1) ≤ 𝑧) ↔ (((𝑦 · 𝐵) − 1) ≤ 𝑧 ∧ (1 / 𝑦) < (𝐵𝐴)))
4745, 46syl6bb 274 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (((𝑦 · 𝐴) < ((𝑦 · 𝐵) − 1) ∧ ((𝑦 · 𝐵) − 1) ≤ 𝑧) ↔ (((𝑦 · 𝐵) − 1) ≤ 𝑧 ∧ (1 / 𝑦) < (𝐵𝐴))))
48 ltmuldiv2 10746 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (𝑦 ∈ ℝ ∧ 0 < 𝑦)) → ((𝑦 · 𝐴) < 𝑧𝐴 < (𝑧 / 𝑦)))
4922, 26, 21, 38, 48syl112anc 1321 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → ((𝑦 · 𝐴) < 𝑧𝐴 < (𝑧 / 𝑦)))
5028, 47, 493imtr3d 280 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → ((((𝑦 · 𝐵) − 1) ≤ 𝑧 ∧ (1 / 𝑦) < (𝐵𝐴)) → 𝐴 < (𝑧 / 𝑦)))
5141recnd 9924 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (𝑦 · 𝐵) ∈ ℂ)
52 ax-1cn 9850 . . . . . . . . . . . . . . 15 1 ∈ ℂ
53 npcan 10141 . . . . . . . . . . . . . . 15 (((𝑦 · 𝐵) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑦 · 𝐵) − 1) + 1) = (𝑦 · 𝐵))
5451, 52, 53sylancl 692 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (((𝑦 · 𝐵) − 1) + 1) = (𝑦 · 𝐵))
5554breq2d 4589 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (𝑧 < (((𝑦 · 𝐵) − 1) + 1) ↔ 𝑧 < (𝑦 · 𝐵)))
56 ltdivmul 10747 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑦 ∈ ℝ ∧ 0 < 𝑦)) → ((𝑧 / 𝑦) < 𝐵𝑧 < (𝑦 · 𝐵)))
5726, 30, 21, 38, 56syl112anc 1321 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → ((𝑧 / 𝑦) < 𝐵𝑧 < (𝑦 · 𝐵)))
5855, 57bitr4d 269 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (𝑧 < (((𝑦 · 𝐵) − 1) + 1) ↔ (𝑧 / 𝑦) < 𝐵))
5958biimpd 217 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (𝑧 < (((𝑦 · 𝐵) − 1) + 1) → (𝑧 / 𝑦) < 𝐵))
6050, 59anim12d 583 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (((((𝑦 · 𝐵) − 1) ≤ 𝑧 ∧ (1 / 𝑦) < (𝐵𝐴)) ∧ 𝑧 < (((𝑦 · 𝐵) − 1) + 1)) → (𝐴 < (𝑧 / 𝑦) ∧ (𝑧 / 𝑦) < 𝐵)))
6120, 60syl5bi 230 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (((((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)) ∧ (1 / 𝑦) < (𝐵𝐴)) → (𝐴 < (𝑧 / 𝑦) ∧ (𝑧 / 𝑦) < 𝐵)))
62 breq2 4581 . . . . . . . . . . 11 (𝑥 = (𝑧 / 𝑦) → (𝐴 < 𝑥𝐴 < (𝑧 / 𝑦)))
63 breq1 4580 . . . . . . . . . . 11 (𝑥 = (𝑧 / 𝑦) → (𝑥 < 𝐵 ↔ (𝑧 / 𝑦) < 𝐵))
6462, 63anbi12d 742 . . . . . . . . . 10 (𝑥 = (𝑧 / 𝑦) → ((𝐴 < 𝑥𝑥 < 𝐵) ↔ (𝐴 < (𝑧 / 𝑦) ∧ (𝑧 / 𝑦) < 𝐵)))
6564rspcev 3281 . . . . . . . . 9 (((𝑧 / 𝑦) ∈ ℚ ∧ (𝐴 < (𝑧 / 𝑦) ∧ (𝑧 / 𝑦) < 𝐵)) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
6619, 61, 65syl6an 565 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (((((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)) ∧ (1 / 𝑦) < (𝐵𝐴)) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
6766expd 450 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → ((((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)) → ((1 / 𝑦) < (𝐵𝐴) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))))
6867expr 640 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝑧 ∈ ℤ → ((((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)) → ((1 / 𝑦) < (𝐵𝐴) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))))
6968rexlimdv 3011 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (∃𝑧 ∈ ℤ (((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)) → ((1 / 𝑦) < (𝐵𝐴) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))))
7016, 69mpd 15 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((1 / 𝑦) < (𝐵𝐴) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
7170rexlimdva 3012 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑦 ∈ ℕ (1 / 𝑦) < (𝐵𝐴) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
727, 71syld 45 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
73723impia 1252 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976  wrex 2896  ∃!wreu 2897   class class class wbr 4577  (class class class)co 6527  cc 9790  cr 9791  0cc0 9792  1c1 9793   + caddc 9795   · cmul 9797   < clt 9930  cle 9931  cmin 10117   / cdiv 10533  cn 10867  cz 11210  cq 11620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-sup 8208  df-inf 8209  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-n0 11140  df-z 11211  df-uz 11520  df-q 11621
This theorem is referenced by:  qbtwnxr  11864  qsqueeze  11865  nmoleub2lem3  22654  mbfaddlem  23150  rpnnen3lem  36412
  Copyright terms: Public domain W3C validator