Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  qmulz Structured version   Visualization version   GIF version

Theorem qmulz 11735
 Description: If 𝐴 is rational, then some integer multiple of it is an integer. (Contributed by NM, 7-Nov-2008.) (Revised by Mario Carneiro, 22-Jul-2014.)
Assertion
Ref Expression
qmulz (𝐴 ∈ ℚ → ∃𝑥 ∈ ℕ (𝐴 · 𝑥) ∈ ℤ)
Distinct variable group:   𝑥,𝐴

Proof of Theorem qmulz
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elq 11734 . 2 (𝐴 ∈ ℚ ↔ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℕ 𝐴 = (𝑦 / 𝑥))
2 rexcom 3091 . . 3 (∃𝑦 ∈ ℤ ∃𝑥 ∈ ℕ 𝐴 = (𝑦 / 𝑥) ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℤ 𝐴 = (𝑦 / 𝑥))
3 zcn 11326 . . . . . . . . 9 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
43adantl 482 . . . . . . . 8 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℂ)
5 nncn 10972 . . . . . . . . 9 (𝑥 ∈ ℕ → 𝑥 ∈ ℂ)
65adantr 481 . . . . . . . 8 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℤ) → 𝑥 ∈ ℂ)
7 nnne0 10997 . . . . . . . . 9 (𝑥 ∈ ℕ → 𝑥 ≠ 0)
87adantr 481 . . . . . . . 8 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℤ) → 𝑥 ≠ 0)
94, 6, 8divcan1d 10746 . . . . . . 7 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℤ) → ((𝑦 / 𝑥) · 𝑥) = 𝑦)
10 simpr 477 . . . . . . 7 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℤ)
119, 10eqeltrd 2698 . . . . . 6 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℤ) → ((𝑦 / 𝑥) · 𝑥) ∈ ℤ)
12 oveq1 6611 . . . . . . 7 (𝐴 = (𝑦 / 𝑥) → (𝐴 · 𝑥) = ((𝑦 / 𝑥) · 𝑥))
1312eleq1d 2683 . . . . . 6 (𝐴 = (𝑦 / 𝑥) → ((𝐴 · 𝑥) ∈ ℤ ↔ ((𝑦 / 𝑥) · 𝑥) ∈ ℤ))
1411, 13syl5ibrcom 237 . . . . 5 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℤ) → (𝐴 = (𝑦 / 𝑥) → (𝐴 · 𝑥) ∈ ℤ))
1514rexlimdva 3024 . . . 4 (𝑥 ∈ ℕ → (∃𝑦 ∈ ℤ 𝐴 = (𝑦 / 𝑥) → (𝐴 · 𝑥) ∈ ℤ))
1615reximia 3003 . . 3 (∃𝑥 ∈ ℕ ∃𝑦 ∈ ℤ 𝐴 = (𝑦 / 𝑥) → ∃𝑥 ∈ ℕ (𝐴 · 𝑥) ∈ ℤ)
172, 16sylbi 207 . 2 (∃𝑦 ∈ ℤ ∃𝑥 ∈ ℕ 𝐴 = (𝑦 / 𝑥) → ∃𝑥 ∈ ℕ (𝐴 · 𝑥) ∈ ℤ)
181, 17sylbi 207 1 (𝐴 ∈ ℚ → ∃𝑥 ∈ ℕ (𝐴 · 𝑥) ∈ ℤ)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  ∃wrex 2908  (class class class)co 6604  ℂcc 9878  0cc0 9880   · cmul 9885   / cdiv 10628  ℕcn 10964  ℤcz 11321  ℚcq 11732 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-z 11322  df-q 11733 This theorem is referenced by:  elqaalem1  23978  elqaalem3  23980
 Copyright terms: Public domain W3C validator