Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qndenserrnbl Structured version   Visualization version   GIF version

Theorem qndenserrnbl 42574
Description: n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
qndenserrnbl.i (𝜑𝐼 ∈ Fin)
qndenserrnbl.x (𝜑𝑋 ∈ (ℝ ↑m 𝐼))
qndenserrnbl.d 𝐷 = (dist‘(ℝ^‘𝐼))
qndenserrnbl.e (𝜑𝐸 ∈ ℝ+)
Assertion
Ref Expression
qndenserrnbl (𝜑 → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸))
Distinct variable groups:   𝑦,𝐷   𝑦,𝐸   𝑦,𝐼   𝑦,𝑋   𝜑,𝑦

Proof of Theorem qndenserrnbl
StepHypRef Expression
1 0ex 5203 . . . . . 6 ∅ ∈ V
21snid 4594 . . . . 5 ∅ ∈ {∅}
32a1i 11 . . . 4 ((𝜑𝐼 = ∅) → ∅ ∈ {∅})
4 oveq2 7158 . . . . . 6 (𝐼 = ∅ → (ℚ ↑m 𝐼) = (ℚ ↑m ∅))
5 qex 12354 . . . . . . . 8 ℚ ∈ V
6 mapdm0 8415 . . . . . . . 8 (ℚ ∈ V → (ℚ ↑m ∅) = {∅})
75, 6ax-mp 5 . . . . . . 7 (ℚ ↑m ∅) = {∅}
87a1i 11 . . . . . 6 (𝐼 = ∅ → (ℚ ↑m ∅) = {∅})
94, 8eqtr2d 2857 . . . . 5 (𝐼 = ∅ → {∅} = (ℚ ↑m 𝐼))
109adantl 484 . . . 4 ((𝜑𝐼 = ∅) → {∅} = (ℚ ↑m 𝐼))
113, 10eleqtrd 2915 . . 3 ((𝜑𝐼 = ∅) → ∅ ∈ (ℚ ↑m 𝐼))
12 qndenserrnbl.i . . . . . . . 8 (𝜑𝐼 ∈ Fin)
13 qndenserrnbl.d . . . . . . . . 9 𝐷 = (dist‘(ℝ^‘𝐼))
1413rrxmetfi 24009 . . . . . . . 8 (𝐼 ∈ Fin → 𝐷 ∈ (Met‘(ℝ ↑m 𝐼)))
1512, 14syl 17 . . . . . . 7 (𝜑𝐷 ∈ (Met‘(ℝ ↑m 𝐼)))
16 metxmet 22938 . . . . . . 7 (𝐷 ∈ (Met‘(ℝ ↑m 𝐼)) → 𝐷 ∈ (∞Met‘(ℝ ↑m 𝐼)))
1715, 16syl 17 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘(ℝ ↑m 𝐼)))
1817adantr 483 . . . . 5 ((𝜑𝐼 = ∅) → 𝐷 ∈ (∞Met‘(ℝ ↑m 𝐼)))
19 qndenserrnbl.x . . . . . . . . . 10 (𝜑𝑋 ∈ (ℝ ↑m 𝐼))
2019adantr 483 . . . . . . . . 9 ((𝜑𝐼 = ∅) → 𝑋 ∈ (ℝ ↑m 𝐼))
21 oveq2 7158 . . . . . . . . . . 11 (𝐼 = ∅ → (ℝ ↑m 𝐼) = (ℝ ↑m ∅))
22 reex 10622 . . . . . . . . . . . . 13 ℝ ∈ V
23 mapdm0 8415 . . . . . . . . . . . . 13 (ℝ ∈ V → (ℝ ↑m ∅) = {∅})
2422, 23ax-mp 5 . . . . . . . . . . . 12 (ℝ ↑m ∅) = {∅}
2524a1i 11 . . . . . . . . . . 11 (𝐼 = ∅ → (ℝ ↑m ∅) = {∅})
2621, 25eqtrd 2856 . . . . . . . . . 10 (𝐼 = ∅ → (ℝ ↑m 𝐼) = {∅})
2726adantl 484 . . . . . . . . 9 ((𝜑𝐼 = ∅) → (ℝ ↑m 𝐼) = {∅})
2820, 27eleqtrd 2915 . . . . . . . 8 ((𝜑𝐼 = ∅) → 𝑋 ∈ {∅})
29 elsng 4574 . . . . . . . . . 10 (𝑋 ∈ (ℝ ↑m 𝐼) → (𝑋 ∈ {∅} ↔ 𝑋 = ∅))
3019, 29syl 17 . . . . . . . . 9 (𝜑 → (𝑋 ∈ {∅} ↔ 𝑋 = ∅))
3130adantr 483 . . . . . . . 8 ((𝜑𝐼 = ∅) → (𝑋 ∈ {∅} ↔ 𝑋 = ∅))
3228, 31mpbid 234 . . . . . . 7 ((𝜑𝐼 = ∅) → 𝑋 = ∅)
3332eqcomd 2827 . . . . . 6 ((𝜑𝐼 = ∅) → ∅ = 𝑋)
3433, 20eqeltrd 2913 . . . . 5 ((𝜑𝐼 = ∅) → ∅ ∈ (ℝ ↑m 𝐼))
35 qndenserrnbl.e . . . . . . . 8 (𝜑𝐸 ∈ ℝ+)
3635rpxrd 12426 . . . . . . 7 (𝜑𝐸 ∈ ℝ*)
3735rpgt0d 12428 . . . . . . 7 (𝜑 → 0 < 𝐸)
3836, 37jca 514 . . . . . 6 (𝜑 → (𝐸 ∈ ℝ* ∧ 0 < 𝐸))
3938adantr 483 . . . . 5 ((𝜑𝐼 = ∅) → (𝐸 ∈ ℝ* ∧ 0 < 𝐸))
40 xblcntr 23015 . . . . 5 ((𝐷 ∈ (∞Met‘(ℝ ↑m 𝐼)) ∧ ∅ ∈ (ℝ ↑m 𝐼) ∧ (𝐸 ∈ ℝ* ∧ 0 < 𝐸)) → ∅ ∈ (∅(ball‘𝐷)𝐸))
4118, 34, 39, 40syl3anc 1367 . . . 4 ((𝜑𝐼 = ∅) → ∅ ∈ (∅(ball‘𝐷)𝐸))
4233oveq1d 7165 . . . 4 ((𝜑𝐼 = ∅) → (∅(ball‘𝐷)𝐸) = (𝑋(ball‘𝐷)𝐸))
4341, 42eleqtrd 2915 . . 3 ((𝜑𝐼 = ∅) → ∅ ∈ (𝑋(ball‘𝐷)𝐸))
44 eleq1 2900 . . . 4 (𝑦 = ∅ → (𝑦 ∈ (𝑋(ball‘𝐷)𝐸) ↔ ∅ ∈ (𝑋(ball‘𝐷)𝐸)))
4544rspcev 3622 . . 3 ((∅ ∈ (ℚ ↑m 𝐼) ∧ ∅ ∈ (𝑋(ball‘𝐷)𝐸)) → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸))
4611, 43, 45syl2anc 586 . 2 ((𝜑𝐼 = ∅) → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸))
4712adantr 483 . . 3 ((𝜑 ∧ ¬ 𝐼 = ∅) → 𝐼 ∈ Fin)
48 neqne 3024 . . . 4 𝐼 = ∅ → 𝐼 ≠ ∅)
4948adantl 484 . . 3 ((𝜑 ∧ ¬ 𝐼 = ∅) → 𝐼 ≠ ∅)
5019adantr 483 . . 3 ((𝜑 ∧ ¬ 𝐼 = ∅) → 𝑋 ∈ (ℝ ↑m 𝐼))
5135adantr 483 . . 3 ((𝜑 ∧ ¬ 𝐼 = ∅) → 𝐸 ∈ ℝ+)
5247, 49, 50, 13, 51qndenserrnbllem 42573 . 2 ((𝜑 ∧ ¬ 𝐼 = ∅) → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸))
5346, 52pm2.61dan 811 1 (𝜑 → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wne 3016  wrex 3139  Vcvv 3494  c0 4290  {csn 4560   class class class wbr 5058  cfv 6349  (class class class)co 7150  m cmap 8400  Fincfn 8503  cr 10530  0cc0 10531  *cxr 10668   < clt 10669  cq 12342  +crp 12383  distcds 16568  ∞Metcxmet 20524  Metcmet 20525  ballcbl 20526  ℝ^crrx 23980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xadd 12502  df-ioo 12736  df-ico 12738  df-fz 12887  df-fzo 13028  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-sum 15037  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-0g 16709  df-gsum 16710  df-prds 16715  df-pws 16717  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-mhm 17950  df-grp 18100  df-minusg 18101  df-sbg 18102  df-subg 18270  df-ghm 18350  df-cntz 18441  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-ring 19293  df-cring 19294  df-oppr 19367  df-dvdsr 19385  df-unit 19386  df-invr 19416  df-dvr 19427  df-rnghom 19461  df-drng 19498  df-field 19499  df-subrg 19527  df-staf 19610  df-srng 19611  df-lmod 19630  df-lss 19698  df-sra 19938  df-rgmod 19939  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-cnfld 20540  df-refld 20743  df-dsmm 20870  df-frlm 20885  df-nm 23186  df-tng 23188  df-tcph 23767  df-rrx 23982
This theorem is referenced by:  qndenserrnopnlem  42576
  Copyright terms: Public domain W3C validator