Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qndenserrnbllem Structured version   Visualization version   GIF version

Theorem qndenserrnbllem 42456
Description: n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
qndenserrnbllem.i (𝜑𝐼 ∈ Fin)
qndenserrnbllem.n (𝜑𝐼 ≠ ∅)
qndenserrnbllem.x (𝜑𝑋 ∈ (ℝ ↑m 𝐼))
qndenserrnbllem.d 𝐷 = (dist‘(ℝ^‘𝐼))
qndenserrnbllem.e (𝜑𝐸 ∈ ℝ+)
Assertion
Ref Expression
qndenserrnbllem (𝜑 → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸))
Distinct variable groups:   𝑦,𝐸   𝑦,𝐼   𝑦,𝑋   𝜑,𝑦
Allowed substitution hint:   𝐷(𝑦)

Proof of Theorem qndenserrnbllem
Dummy variables 𝑖 𝑘 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qndenserrnbllem.i . . . 4 (𝜑𝐼 ∈ Fin)
2 inss1 4202 . . . . . 6 (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ⊆ ℚ
3 qex 12348 . . . . . 6 ℚ ∈ V
4 ssexg 5218 . . . . . 6 (((ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ⊆ ℚ ∧ ℚ ∈ V) → (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ∈ V)
52, 3, 4mp2an 688 . . . . 5 (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ∈ V
65a1i 11 . . . 4 ((𝜑𝑘𝐼) → (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ∈ V)
7 qndenserrnbllem.x . . . . . . . . . . . 12 (𝜑𝑋 ∈ (ℝ ↑m 𝐼))
8 elmapi 8417 . . . . . . . . . . . 12 (𝑋 ∈ (ℝ ↑m 𝐼) → 𝑋:𝐼⟶ℝ)
97, 8syl 17 . . . . . . . . . . 11 (𝜑𝑋:𝐼⟶ℝ)
109adantr 481 . . . . . . . . . 10 ((𝜑𝑘𝐼) → 𝑋:𝐼⟶ℝ)
11 simpr 485 . . . . . . . . . 10 ((𝜑𝑘𝐼) → 𝑘𝐼)
1210, 11ffvelrnd 6844 . . . . . . . . 9 ((𝜑𝑘𝐼) → (𝑋𝑘) ∈ ℝ)
1312rexrd 10679 . . . . . . . 8 ((𝜑𝑘𝐼) → (𝑋𝑘) ∈ ℝ*)
14 qndenserrnbllem.e . . . . . . . . . . . . 13 (𝜑𝐸 ∈ ℝ+)
1514rpred 12419 . . . . . . . . . . . 12 (𝜑𝐸 ∈ ℝ)
1615adantr 481 . . . . . . . . . . 11 ((𝜑𝑘𝐼) → 𝐸 ∈ ℝ)
17 ne0i 4297 . . . . . . . . . . . . . . 15 (𝑘𝐼𝐼 ≠ ∅)
1817adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐼) → 𝐼 ≠ ∅)
19 hashnncl 13715 . . . . . . . . . . . . . . . 16 (𝐼 ∈ Fin → ((♯‘𝐼) ∈ ℕ ↔ 𝐼 ≠ ∅))
201, 19syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((♯‘𝐼) ∈ ℕ ↔ 𝐼 ≠ ∅))
2120adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐼) → ((♯‘𝐼) ∈ ℕ ↔ 𝐼 ≠ ∅))
2218, 21mpbird 258 . . . . . . . . . . . . 13 ((𝜑𝑘𝐼) → (♯‘𝐼) ∈ ℕ)
2322nnred 11641 . . . . . . . . . . . 12 ((𝜑𝑘𝐼) → (♯‘𝐼) ∈ ℝ)
24 0red 10632 . . . . . . . . . . . . 13 ((𝜑𝑘𝐼) → 0 ∈ ℝ)
2522nngt0d 11674 . . . . . . . . . . . . 13 ((𝜑𝑘𝐼) → 0 < (♯‘𝐼))
2624, 23, 25ltled 10776 . . . . . . . . . . . 12 ((𝜑𝑘𝐼) → 0 ≤ (♯‘𝐼))
2723, 26resqrtcld 14765 . . . . . . . . . . 11 ((𝜑𝑘𝐼) → (√‘(♯‘𝐼)) ∈ ℝ)
2823, 25elrpd 12416 . . . . . . . . . . . . 13 ((𝜑𝑘𝐼) → (♯‘𝐼) ∈ ℝ+)
2928sqrtgt0d 14760 . . . . . . . . . . . 12 ((𝜑𝑘𝐼) → 0 < (√‘(♯‘𝐼)))
3024, 29gtned 10763 . . . . . . . . . . 11 ((𝜑𝑘𝐼) → (√‘(♯‘𝐼)) ≠ 0)
3116, 27, 30redivcld 11456 . . . . . . . . . 10 ((𝜑𝑘𝐼) → (𝐸 / (√‘(♯‘𝐼))) ∈ ℝ)
3212, 31readdcld 10658 . . . . . . . . 9 ((𝜑𝑘𝐼) → ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))) ∈ ℝ)
3332rexrd 10679 . . . . . . . 8 ((𝜑𝑘𝐼) → ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))) ∈ ℝ*)
3414adantr 481 . . . . . . . . . 10 ((𝜑𝑘𝐼) → 𝐸 ∈ ℝ+)
3527, 29elrpd 12416 . . . . . . . . . 10 ((𝜑𝑘𝐼) → (√‘(♯‘𝐼)) ∈ ℝ+)
3634, 35rpdivcld 12436 . . . . . . . . 9 ((𝜑𝑘𝐼) → (𝐸 / (√‘(♯‘𝐼))) ∈ ℝ+)
3712, 36ltaddrpd 12452 . . . . . . . 8 ((𝜑𝑘𝐼) → (𝑋𝑘) < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))
38 qbtwnxr 12581 . . . . . . . 8 (((𝑋𝑘) ∈ ℝ* ∧ ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))) ∈ ℝ* ∧ (𝑋𝑘) < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))) → ∃𝑞 ∈ ℚ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))
3913, 33, 37, 38syl3anc 1363 . . . . . . 7 ((𝜑𝑘𝐼) → ∃𝑞 ∈ ℚ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))
40 df-rex 3141 . . . . . . 7 (∃𝑞 ∈ ℚ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))) ↔ ∃𝑞(𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))
4139, 40sylib 219 . . . . . 6 ((𝜑𝑘𝐼) → ∃𝑞(𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))
42 simprl 767 . . . . . . . . 9 (((𝜑𝑘𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → 𝑞 ∈ ℚ)
4313adantr 481 . . . . . . . . . 10 (((𝜑𝑘𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → (𝑋𝑘) ∈ ℝ*)
4433adantr 481 . . . . . . . . . 10 (((𝜑𝑘𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))) ∈ ℝ*)
45 qre 12341 . . . . . . . . . . 11 (𝑞 ∈ ℚ → 𝑞 ∈ ℝ)
4645ad2antrl 724 . . . . . . . . . 10 (((𝜑𝑘𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → 𝑞 ∈ ℝ)
47 simprrl 777 . . . . . . . . . 10 (((𝜑𝑘𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → (𝑋𝑘) < 𝑞)
48 simprrr 778 . . . . . . . . . 10 (((𝜑𝑘𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → 𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))
4943, 44, 46, 47, 48eliood 41649 . . . . . . . . 9 (((𝜑𝑘𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → 𝑞 ∈ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))
5042, 49elind 4168 . . . . . . . 8 (((𝜑𝑘𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → 𝑞 ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))
5150ex 413 . . . . . . 7 ((𝜑𝑘𝐼) → ((𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) → 𝑞 ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))))
5251eximdv 1909 . . . . . 6 ((𝜑𝑘𝐼) → (∃𝑞(𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) → ∃𝑞 𝑞 ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))))
5341, 52mpd 15 . . . . 5 ((𝜑𝑘𝐼) → ∃𝑞 𝑞 ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))
54 n0 4307 . . . . 5 ((ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ≠ ∅ ↔ ∃𝑞 𝑞 ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))
5553, 54sylibr 235 . . . 4 ((𝜑𝑘𝐼) → (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ≠ ∅)
561, 6, 55choicefi 41339 . . 3 (𝜑 → ∃𝑦(𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))))
572a1i 11 . . . . . . . . . . . 12 (𝑦 Fn 𝐼 → (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ⊆ ℚ)
5857sseld 3963 . . . . . . . . . . 11 (𝑦 Fn 𝐼 → ((𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) → (𝑦𝑘) ∈ ℚ))
5958ralimdv 3175 . . . . . . . . . 10 (𝑦 Fn 𝐼 → (∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) → ∀𝑘𝐼 (𝑦𝑘) ∈ ℚ))
6059imdistani 569 . . . . . . . . 9 ((𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ ℚ))
61 ffnfv 6874 . . . . . . . . 9 (𝑦:𝐼⟶ℚ ↔ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ ℚ))
6260, 61sylibr 235 . . . . . . . 8 ((𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → 𝑦:𝐼⟶ℚ)
6362adantl 482 . . . . . . 7 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → 𝑦:𝐼⟶ℚ)
643a1i 11 . . . . . . . . 9 (𝜑 → ℚ ∈ V)
65 elmapg 8408 . . . . . . . . 9 ((ℚ ∈ V ∧ 𝐼 ∈ Fin) → (𝑦 ∈ (ℚ ↑m 𝐼) ↔ 𝑦:𝐼⟶ℚ))
6664, 1, 65syl2anc 584 . . . . . . . 8 (𝜑 → (𝑦 ∈ (ℚ ↑m 𝐼) ↔ 𝑦:𝐼⟶ℚ))
6766adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (𝑦 ∈ (ℚ ↑m 𝐼) ↔ 𝑦:𝐼⟶ℚ))
6863, 67mpbird 258 . . . . . 6 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → 𝑦 ∈ (ℚ ↑m 𝐼))
69 reex 10616 . . . . . . . . . . 11 ℝ ∈ V
7045ssriv 3968 . . . . . . . . . . 11 ℚ ⊆ ℝ
71 mapss 8441 . . . . . . . . . . 11 ((ℝ ∈ V ∧ ℚ ⊆ ℝ) → (ℚ ↑m 𝐼) ⊆ (ℝ ↑m 𝐼))
7269, 70, 71mp2an 688 . . . . . . . . . 10 (ℚ ↑m 𝐼) ⊆ (ℝ ↑m 𝐼)
7372a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (ℚ ↑m 𝐼) ⊆ (ℝ ↑m 𝐼))
7473, 68sseldd 3965 . . . . . . . 8 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → 𝑦 ∈ (ℝ ↑m 𝐼))
751adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → 𝐼 ∈ Fin)
76 qndenserrnbllem.n . . . . . . . . . . 11 (𝜑𝐼 ≠ ∅)
7776adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → 𝐼 ≠ ∅)
78 eqid 2818 . . . . . . . . . 10 (♯‘𝐼) = (♯‘𝐼)
797adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → 𝑋 ∈ (ℝ ↑m 𝐼))
80 simpll 763 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) ∧ 𝑖𝐼) → 𝜑)
81 fveq2 6663 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → (𝑦𝑘) = (𝑦𝑖))
82 fveq2 6663 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑖 → (𝑋𝑘) = (𝑋𝑖))
8382oveq1d 7160 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑖 → ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))) = ((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))
8482, 83oveq12d 7163 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑖 → ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))) = ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))))
8584ineq2d 4186 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) = (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))))
8681, 85eleq12d 2904 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑖 → ((𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ↔ (𝑦𝑖) ∈ (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))))))
8786cbvralvw 3447 . . . . . . . . . . . . . . . . 17 (∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ↔ ∀𝑖𝐼 (𝑦𝑖) ∈ (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))))
8887biimpi 217 . . . . . . . . . . . . . . . 16 (∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) → ∀𝑖𝐼 (𝑦𝑖) ∈ (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))))
8988adantr 481 . . . . . . . . . . . . . . 15 ((∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ∧ 𝑖𝐼) → ∀𝑖𝐼 (𝑦𝑖) ∈ (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))))
90 simpr 485 . . . . . . . . . . . . . . 15 ((∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ∧ 𝑖𝐼) → 𝑖𝐼)
91 rspa 3203 . . . . . . . . . . . . . . 15 ((∀𝑖𝐼 (𝑦𝑖) ∈ (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))) ∧ 𝑖𝐼) → (𝑦𝑖) ∈ (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))))
9289, 90, 91syl2anc 584 . . . . . . . . . . . . . 14 ((∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ∧ 𝑖𝐼) → (𝑦𝑖) ∈ (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))))
9392adantll 710 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) ∧ 𝑖𝐼) → (𝑦𝑖) ∈ (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))))
94 elinel2 4170 . . . . . . . . . . . . 13 ((𝑦𝑖) ∈ (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))) → (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))))
9593, 94syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) ∧ 𝑖𝐼) → (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))))
96 simpr 485 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) ∧ 𝑖𝐼) → 𝑖𝐼)
979ffvelrnda 6843 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝐼) → (𝑋𝑖) ∈ ℝ)
98973adant2 1123 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (𝑋𝑖) ∈ ℝ)
99 simp2 1129 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))))
10099elioored 41701 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (𝑦𝑖) ∈ ℝ)
10198rexrd 10679 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (𝑋𝑖) ∈ ℝ*)
10215adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖𝐼) → 𝐸 ∈ ℝ)
10376, 20mpbird 258 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (♯‘𝐼) ∈ ℕ)
104103nnred 11641 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (♯‘𝐼) ∈ ℝ)
105104adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖𝐼) → (♯‘𝐼) ∈ ℝ)
106 0red 10632 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 0 ∈ ℝ)
107103nngt0d 11674 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 0 < (♯‘𝐼))
108106, 104, 107ltled 10776 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 0 ≤ (♯‘𝐼))
109108adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖𝐼) → 0 ≤ (♯‘𝐼))
110105, 109resqrtcld 14765 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖𝐼) → (√‘(♯‘𝐼)) ∈ ℝ)
111 sqrtgt0 14606 . . . . . . . . . . . . . . . . . . . . . . 23 (((♯‘𝐼) ∈ ℝ ∧ 0 < (♯‘𝐼)) → 0 < (√‘(♯‘𝐼)))
112104, 107, 111syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 0 < (√‘(♯‘𝐼)))
113106, 112gtned 10763 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (√‘(♯‘𝐼)) ≠ 0)
114113adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖𝐼) → (√‘(♯‘𝐼)) ≠ 0)
115102, 110, 114redivcld 11456 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖𝐼) → (𝐸 / (√‘(♯‘𝐼))) ∈ ℝ)
11697, 115readdcld 10658 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖𝐼) → ((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))) ∈ ℝ)
117116rexrd 10679 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝐼) → ((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))) ∈ ℝ*)
1181173adant2 1123 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → ((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))) ∈ ℝ*)
119 ioogtlb 41646 . . . . . . . . . . . . . . . 16 (((𝑋𝑖) ∈ ℝ* ∧ ((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))) ∈ ℝ* ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))) → (𝑋𝑖) < (𝑦𝑖))
120101, 118, 99, 119syl3anc 1363 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (𝑋𝑖) < (𝑦𝑖))
12198, 100, 120ltled 10776 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (𝑋𝑖) ≤ (𝑦𝑖))
12298, 100, 121abssuble0d 14780 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (abs‘((𝑋𝑖) − (𝑦𝑖))) = ((𝑦𝑖) − (𝑋𝑖)))
1231163adant2 1123 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → ((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))) ∈ ℝ)
124 iooltub 41662 . . . . . . . . . . . . . . . 16 (((𝑋𝑖) ∈ ℝ* ∧ ((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))) ∈ ℝ* ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))) → (𝑦𝑖) < ((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))
125101, 118, 99, 124syl3anc 1363 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (𝑦𝑖) < ((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))
126100, 123, 98, 125ltsub1dd 11240 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → ((𝑦𝑖) − (𝑋𝑖)) < (((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))) − (𝑋𝑖)))
12798recnd 10657 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (𝑋𝑖) ∈ ℂ)
128104, 108resqrtcld 14765 . . . . . . . . . . . . . . . . . 18 (𝜑 → (√‘(♯‘𝐼)) ∈ ℝ)
12915, 128, 113redivcld 11456 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐸 / (√‘(♯‘𝐼))) ∈ ℝ)
130129recnd 10657 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐸 / (√‘(♯‘𝐼))) ∈ ℂ)
1311303ad2ant1 1125 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (𝐸 / (√‘(♯‘𝐼))) ∈ ℂ)
132127, 131pncan2d 10987 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))) − (𝑋𝑖)) = (𝐸 / (√‘(♯‘𝐼))))
133126, 132breqtrd 5083 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → ((𝑦𝑖) − (𝑋𝑖)) < (𝐸 / (√‘(♯‘𝐼))))
134122, 133eqbrtrd 5079 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (abs‘((𝑋𝑖) − (𝑦𝑖))) < (𝐸 / (√‘(♯‘𝐼))))
13580, 95, 96, 134syl3anc 1363 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) ∧ 𝑖𝐼) → (abs‘((𝑋𝑖) − (𝑦𝑖))) < (𝐸 / (√‘(♯‘𝐼))))
136135adantlrl 716 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) ∧ 𝑖𝐼) → (abs‘((𝑋𝑖) − (𝑦𝑖))) < (𝐸 / (√‘(♯‘𝐼))))
13714adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → 𝐸 ∈ ℝ+)
138104, 107elrpd 12416 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝐼) ∈ ℝ+)
139138adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (♯‘𝐼) ∈ ℝ+)
140139rpsqrtcld 14759 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (√‘(♯‘𝐼)) ∈ ℝ+)
141137, 140rpdivcld 12436 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (𝐸 / (√‘(♯‘𝐼))) ∈ ℝ+)
142 qndenserrnbllem.d . . . . . . . . . 10 𝐷 = (dist‘(ℝ^‘𝐼))
14375, 77, 78, 79, 74, 136, 141, 142rrndistlt 42452 . . . . . . . . 9 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (𝑋𝐷𝑦) < ((√‘(♯‘𝐼)) · (𝐸 / (√‘(♯‘𝐼)))))
144137rpcnd 12421 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → 𝐸 ∈ ℂ)
145139rpcnd 12421 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (♯‘𝐼) ∈ ℂ)
146145sqrtcld 14785 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (√‘(♯‘𝐼)) ∈ ℂ)
147140rpne0d 12424 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (√‘(♯‘𝐼)) ≠ 0)
148144, 146, 147divcan2d 11406 . . . . . . . . 9 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → ((√‘(♯‘𝐼)) · (𝐸 / (√‘(♯‘𝐼)))) = 𝐸)
149143, 148breqtrd 5083 . . . . . . . 8 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (𝑋𝐷𝑦) < 𝐸)
15074, 149jca 512 . . . . . . 7 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (𝑦 ∈ (ℝ ↑m 𝐼) ∧ (𝑋𝐷𝑦) < 𝐸))
151142rrxmetfi 23942 . . . . . . . . . . 11 (𝐼 ∈ Fin → 𝐷 ∈ (Met‘(ℝ ↑m 𝐼)))
1521, 151syl 17 . . . . . . . . . 10 (𝜑𝐷 ∈ (Met‘(ℝ ↑m 𝐼)))
153 metxmet 22871 . . . . . . . . . 10 (𝐷 ∈ (Met‘(ℝ ↑m 𝐼)) → 𝐷 ∈ (∞Met‘(ℝ ↑m 𝐼)))
154152, 153syl 17 . . . . . . . . 9 (𝜑𝐷 ∈ (∞Met‘(ℝ ↑m 𝐼)))
15515rexrd 10679 . . . . . . . . 9 (𝜑𝐸 ∈ ℝ*)
156 elbl 22925 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘(ℝ ↑m 𝐼)) ∧ 𝑋 ∈ (ℝ ↑m 𝐼) ∧ 𝐸 ∈ ℝ*) → (𝑦 ∈ (𝑋(ball‘𝐷)𝐸) ↔ (𝑦 ∈ (ℝ ↑m 𝐼) ∧ (𝑋𝐷𝑦) < 𝐸)))
157154, 7, 155, 156syl3anc 1363 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝑋(ball‘𝐷)𝐸) ↔ (𝑦 ∈ (ℝ ↑m 𝐼) ∧ (𝑋𝐷𝑦) < 𝐸)))
158157adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (𝑦 ∈ (𝑋(ball‘𝐷)𝐸) ↔ (𝑦 ∈ (ℝ ↑m 𝐼) ∧ (𝑋𝐷𝑦) < 𝐸)))
159150, 158mpbird 258 . . . . . 6 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → 𝑦 ∈ (𝑋(ball‘𝐷)𝐸))
16068, 159jca 512 . . . . 5 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ (𝑋(ball‘𝐷)𝐸)))
161160ex 413 . . . 4 (𝜑 → ((𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → (𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ (𝑋(ball‘𝐷)𝐸))))
162161eximdv 1909 . . 3 (𝜑 → (∃𝑦(𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → ∃𝑦(𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ (𝑋(ball‘𝐷)𝐸))))
16356, 162mpd 15 . 2 (𝜑 → ∃𝑦(𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ (𝑋(ball‘𝐷)𝐸)))
164 df-rex 3141 . 2 (∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸) ↔ ∃𝑦(𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ (𝑋(ball‘𝐷)𝐸)))
165163, 164sylibr 235 1 (𝜑 → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wex 1771  wcel 2105  wne 3013  wral 3135  wrex 3136  Vcvv 3492  cin 3932  wss 3933  c0 4288   class class class wbr 5057   Fn wfn 6343  wf 6344  cfv 6348  (class class class)co 7145  m cmap 8395  Fincfn 8497  cc 10523  cr 10524  0cc0 10525   + caddc 10528   · cmul 10530  *cxr 10662   < clt 10663  cle 10664  cmin 10858   / cdiv 11285  cn 11626  cq 12336  +crp 12377  (,)cioo 12726  chash 13678  csqrt 14580  abscabs 14581  distcds 16562  ∞Metcxmet 20458  Metcmet 20459  ballcbl 20460  ℝ^crrx 23913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-tpos 7881  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-map 8397  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xadd 12496  df-ioo 12730  df-ico 12732  df-fz 12881  df-fzo 13022  df-seq 13358  df-exp 13418  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-clim 14833  df-sum 15031  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-hom 16577  df-cco 16578  df-0g 16703  df-gsum 16704  df-prds 16709  df-pws 16711  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-mhm 17944  df-grp 18044  df-minusg 18045  df-sbg 18046  df-subg 18214  df-ghm 18294  df-cntz 18385  df-cmn 18837  df-abl 18838  df-mgp 19169  df-ur 19181  df-ring 19228  df-cring 19229  df-oppr 19302  df-dvdsr 19320  df-unit 19321  df-invr 19351  df-dvr 19362  df-rnghom 19396  df-drng 19433  df-field 19434  df-subrg 19462  df-staf 19545  df-srng 19546  df-lmod 19565  df-lss 19633  df-sra 19873  df-rgmod 19874  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-cnfld 20474  df-refld 20677  df-dsmm 20804  df-frlm 20819  df-nm 23119  df-tng 23121  df-tcph 23700  df-rrx 23915
This theorem is referenced by:  qndenserrnbl  42457
  Copyright terms: Public domain W3C validator