MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qnumval Structured version   Visualization version   GIF version

Theorem qnumval 16080
Description: Value of the canonical numerator function. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
qnumval (𝐴 ∈ ℚ → (numer‘𝐴) = (1st ‘(𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))))))
Distinct variable group:   𝑥,𝐴

Proof of Theorem qnumval
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2828 . . . . 5 (𝑎 = 𝐴 → (𝑎 = ((1st𝑥) / (2nd𝑥)) ↔ 𝐴 = ((1st𝑥) / (2nd𝑥))))
21anbi2d 630 . . . 4 (𝑎 = 𝐴 → ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝑎 = ((1st𝑥) / (2nd𝑥))) ↔ (((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥)))))
32riotabidv 7119 . . 3 (𝑎 = 𝐴 → (𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝑎 = ((1st𝑥) / (2nd𝑥)))) = (𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥)))))
43fveq2d 6677 . 2 (𝑎 = 𝐴 → (1st ‘(𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝑎 = ((1st𝑥) / (2nd𝑥))))) = (1st ‘(𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))))))
5 df-numer 16078 . 2 numer = (𝑎 ∈ ℚ ↦ (1st ‘(𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝑎 = ((1st𝑥) / (2nd𝑥))))))
6 fvex 6686 . 2 (1st ‘(𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))))) ∈ V
74, 5, 6fvmpt 6771 1 (𝐴 ∈ ℚ → (numer‘𝐴) = (1st ‘(𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113   × cxp 5556  cfv 6358  crio 7116  (class class class)co 7159  1st c1st 7690  2nd c2nd 7691  1c1 10541   / cdiv 11300  cn 11641  cz 11984  cq 12351   gcd cgcd 15846  numercnumer 16076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pr 5333
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-iota 6317  df-fun 6360  df-fv 6366  df-riota 7117  df-numer 16078
This theorem is referenced by:  qnumdencl  16082  fnum  16085  qnumdenbi  16087
  Copyright terms: Public domain W3C validator